Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 125(7): 073203, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32857563

ABSTRACT

Free-electron lasers provide a source of x-ray pulses short enough and intense enough to drive nonlinearities in molecular systems. Impulsive interactions driven by these x-ray pulses provide a way to create and probe valence electron motions with high temporal and spatial resolution. Observing these electronic motions is crucial to understand the role of electronic coherence in chemical processes. A simple nonlinear technique for probing electronic motion, impulsive stimulated x-ray Raman scattering (ISXRS), involves a single impulsive interaction to produce a coherent superposition of electronic states. We demonstrate electronic population transfer via ISXRS using broad bandwidth (5.5 eV full width at half maximum) attosecond x-ray pulses produced by the Linac Coherent Light Source. The impulsive excitation is resonantly enhanced by the oxygen 1s→2π^{*} resonance of nitric oxide (NO), and excited state neutral molecules are probed with a time-delayed UV laser pulse.

2.
Sci Adv ; 5(8): eaax3346, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31453340

ABSTRACT

Charge order is universal among high-T c cuprates, but its relation to superconductivity is unclear. While static order competes with superconductivity, dynamic order may be favorable and even contribute to Cooper pairing. Using time-resolved resonant soft x-ray scattering at a free-electron laser, we show that the charge order in prototypical La2-x Ba x CuO4 exhibits transverse fluctuations at picosecond time scales. These sub-millielectron volt excitations propagate by Brownian-like diffusion and have an energy scale remarkably close to the superconducting T c. At sub-millielectron volt energy scales, the dynamics are governed by universal scaling laws defined by the propagation of topological defects. Our results show that charge order in La2-x Ba x CuO4 exhibits dynamics favorable to the in-plane superconducting tunneling and establish time-resolved x-rays as a means to study excitations at energy scales inaccessible to conventional scattering techniques.

3.
Opt Express ; 24(5): 5287-5299, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-29092353

ABSTRACT

Ultrafast mid-infrared (IR) coherent radiation plays an important role in strong-field physics, wherein the use of longer wavelengths has reduced the optical intensities needed to drive light-matter interactions by orders of magnitude in comparison to near-IR radiation. Optimizing parametric interactions for generation and characterization of mid-IR pulses is an enabling step for those applications. We report on the production of >50 µJ femtosecond pulses centered at 5 µm in a two-stage optical parametric amplifier (OPA) based on ZnGeP2, a high-performance optical material in this spectral region. The OPA is pumped by an ultrafast 2-µm source. Amplified pulses have been characterized by parametric upconversion, enabling the use of standard silicon detectors. A numerical model of the system has been developed and tested to control dispersion, group-velocity mismatch, and off-axis parametric fluorescence. The source architecture is suitable for production of mJ-level mid-IR ultrafast pulses without the use of chirped-pulse amplification, where convenient pumping could be realized directly by mid-IR laser sources based on materials such as Cr:ZnSe or Cr:ZnS.

4.
Rev Sci Instrum ; 85(2): 023102, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24593344

ABSTRACT

We describe the production of 2.2-mJ, ∼6 optical-cycle-long mid-infrared laser pulses with a carrier wavelength of 2.05 µm in a two-stage ß-BaB2O4 nondegenerate optical parametric amplifier design with a mixed phase matching scheme, which is pumped by a standard Ti:sapphire chirped-pulse amplification system. It is demonstrated that relatively high pulse energies, short pulse durations, high stability, and excellent beam profiles can be obtained using this simple approach, even without the use of optical parametric chirped-pulse amplification.


Subject(s)
Amplifiers, Electronic , Lasers , Equipment Design
SELECTION OF CITATIONS
SEARCH DETAIL
...