Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Int J Obes (Lond) ; 39(2): 312-20, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25027224

ABSTRACT

BACKGROUND/OBJECTIVES: Impaired energy metabolism is the defining characteristic of obesity-related heart failure. The adipocyte-derived peptide apelin has a role in the regulation of cardiovascular and metabolic homeostasis and may contribute to the link between obesity, energy metabolism and cardiac function. Here we investigate the role of apelin in the transition from metabolic adaptation to maladaptation of the heart in obese state. METHODS: Adult male C57BL/6J, apelin knock-out (KO) or wild-type mice were fed a high-fat diet (HFD) for 18 weeks. To induce heart failure, mice were subjected to pressure overload after 18 weeks of HFD. Long-term effects of apelin on fatty acid (FA) oxidation, glucose metabolism, cardiac function and mitochondrial changes were evaluated in HFD-fed mice after 4 weeks of pressure overload. Cardiomyocytes from HFD-fed mice were isolated for analysis of metabolic responses. RESULTS: In HFD-fed mice, pressure overload-induced transition from hypertrophy to heart failure is associated with reduced FA utilization (P<0.05), accelerated glucose oxidation (P<0.05) and mitochondrial damage. Treatment of HFD-fed mice with apelin for 4 weeks prevented pressure overload-induced decline in FA metabolism (P<0.05) and mitochondrial defects. Furthermore, apelin treatment lowered fasting plasma glucose (P<0.01), improved glucose tolerance (P<0.05) and preserved cardiac function (P<0.05) in HFD-fed mice subjected to pressure overload. In apelin KO HFD-fed mice, spontaneous cardiac dysfunction is associated with reduced FA oxidation (P<0.001) and increased glucose oxidation (P<0.05). In isolated cardiomyocytes, apelin stimulated FA oxidation in a dose-dependent manner and this effect was prevented by small interfering RNA sirtuin 3 knockdown. CONCLUSIONS: These data suggest that obesity-related decline in cardiac function is associated with defective myocardial energy metabolism and mitochondrial abnormalities. Furthermore, our work points for therapeutic potential of apelin to prevent myocardial metabolic abnormalities in heart failure paired with obesity.


Subject(s)
Adipokines/metabolism , Heart Failure/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Myocardium/metabolism , Obesity/pathology , Animals , Apelin , Diet, High-Fat , Disease Models, Animal , Heart Failure/pathology , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Oxidation-Reduction
2.
Inflamm Res ; 59 Suppl 2: S227-9, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20012150

ABSTRACT

INTRODUCTION: Histaminergic status can modify adipose tissue (AT) development: histamine-free mice exhibit visceral obesity, and treatments with H3-antagonists reduce body weight gain. However, direct histamine effects on AT remain poorly documented: it has been observed that histamine stimulates lipolysis in rodent adipocytes when its oxidation by amine oxidases (AOs) is blocked by inhibitors such as semicarbazide. OBJECTIVE: The aim of this work was to study the influence of AOC3 gene invalidation, encoding for semicarbazide-sensitive AO (SSAO), on histamine oxidation and on histamine lipolytic activity in AT. MATERIALS AND METHODS: Expression of AOC- and MAO-encoding genes was determined by real-type PCR in wild-type (WT) and SSAO-deficient (AOC3-KO) mice. Lipolysis was assessed by glycerol release in isolated adipocytes and AO activity by substrate-induced hydrogen peroxide formation in kidney, ileum and AT. RESULTS: The expression levels of the genes encoding AOC1, AOC2 or MAOA and MAOB were not modified in the AT of AOC3-KO mice. In WT mice, histamine oxidation was lower than that of the reference SSAO-substrate benzylamine in AT, but not in ileum. The order of magnitude regarding benzylamine oxidation was AT > ileum >> kidney. In AOC3-KO mice, benzylamine oxidation was abolished in all tissues, while histamine oxidation was abolished in AT but not in ileum. Histamine was inactive on lipolysis in WT but stimulated lipolysis in fat cells from AOC3-KO mice, without reaching the maximal intensity of beta-adrenergic stimulation. CONCLUSION: Histamine was mainly oxidized by diamine oxidase (AOC1 product) in intestine, but by SSAO (AOC3 product) in AT. When protected from its oxidation by SSAO in AT, histamine moderately activated lipolysis in adipocytes in AOC3-KO mice.


Subject(s)
Adipose Tissue/enzymology , Adipose Tissue/metabolism , Amine Oxidase (Copper-Containing)/genetics , Cell Adhesion Molecules/genetics , Histamine/metabolism , Adipocytes/drug effects , Adipocytes/enzymology , Adipocytes/metabolism , Animals , Benzylamines/metabolism , Benzylamines/pharmacology , Hydrogen Peroxide/metabolism , Lipolysis/genetics , Mice , Mice, Knockout , Monoamine Oxidase Inhibitors/pharmacology , Oxidation-Reduction , Reverse Transcriptase Polymerase Chain Reaction , Semicarbazides/pharmacology
3.
J. physiol. biochem ; 65(4): 351-359, dic. 2009.
Article in English | IBECS | ID: ibc-122857

ABSTRACT

No disponible


Visfatin, a protein identified as a secretion product of visceral fat in humans and mice, is also expressed in different anatomical locations, and is known as pre-B cell-colony enhancing factor (PEBF1). It is also an enzyme displaying nicotinamide phosphoribosyltransferase activity (Nampt). The evidence that levels of visfatin correlate with visceral fat mass has been largely debated and widely extended to other regulations in numerous clinical studies and in diverse animal models. On the opposite, the initial findings regarding the capacity of visfatin/Nampt/PEBF1 to bind and to activate the insulin receptor have been scarcely reproduced, and even were contradicted in recent reports. Since the putative insulin mimicking effects of visfatin/Nampt/PEBF1 have never been tested on mature human adipocytes, at least to our knowledge, we tested different human visfatin batches on human fat cells freshly isolated from subcutaneous abdominal fat and exhibiting high insulin responsiveness. Up to 10 nM, visfatin was devoid of clear activatory action on glucose transport in human fat cells while, in the same conditions, insulin increased by more than threefold the basal 2-deoxyglucose uptake. Moreover, visfatin was unable to mimic the lipolysis inhibition induced by insulin. Visfatin definitively cannot be considered as a direct activator of insulin signalling in human fat cells. Nevertheless its in vivo effects on insulin release and on glucose handling deserve to further study the role of this multifunctional extracellular enzyme in obese and diabetic states (AU)


Subject(s)
Humans , Nicotinamide Phosphoribosyltransferase/pharmacokinetics , Adipocytes , Insulin , Extracellular Space/enzymology , Diabetes Mellitus/physiopathology , Obesity/physiopathology
4.
J Physiol Biochem ; 65(4): 351-9, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20358348

ABSTRACT

Visfatin, a protein identified as a secretion product of visceral fat in humans and mice, is also expressed in different anatomical locations, and is known as pre-B cell-colony enhancing factor (PEBF1). It is also an enzyme displaying nicotinamide phosphoribosyltransferase activity (Nampt). The evidence that levels of visfatin correlate with visceral fat mass has been largely debated and widely extended to other regulations in numerous clinical studies and in diverse animal models. On the opposite, the initial findings regarding the capacity of visfatin/Nampt/PEBF1 to bind and to activate the insulin receptor have been scarcely reproduced, and even were contradicted in recent reports. Since the putative insulin mimicking effects of visfatin/Nampt/PEBF1 have never been tested on mature human adipocytes, at least to our knowledge, we tested different human visfatin batches on human fat cells freshly isolated from subcutaneous abdominal fat and exhibiting high insulin responsiveness. Up to 10 nM, visfatin was devoid of clear activatory action on glucose transport in human fat cells while, in the same conditions, insulin increased by more than threefold the basal 2-deoxyglucose uptake. Moreover, visfatin was unable to mimic the lipolysis inhibition induced by insulin. Visfatin definitively cannot be considered as a direct activator of insulin signalling in human fat cells. Nevertheless itsin vivo effects on insulin release and on glucose handling deserve to further study the role of this multifunctional extracellular enzyme in obese and diabetic states.


Subject(s)
Adipocytes/cytology , Gene Expression Regulation , Insulin/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , 3T3 Cells , Adipokines/metabolism , Adipose Tissue/metabolism , Adult , Animals , Female , Glucose/metabolism , Humans , Mice , Middle Aged , NAD/metabolism
5.
Pharmacol Res ; 56(1): 70-9, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17548204

ABSTRACT

Beneficial effects of aminoguanidine (AG) on diabetic vascular complications result from prevention of protein glycation, inhibition of inductible NO synthase, and inhibition of vascular semicarbazide-sensitive amine oxidase (SSAO). However, influence of AG on adipose tissue deposition has been poorly investigated in obesity. Considering that SSAO is highly expressed in fat cells, and that a SSAO blocker has been recently reported to reduce body weight gain in obese mice, this work aimed to investigate the influence of AG on adipose tissue functions. First, AG was shown to directly inhibit SSAO activity in cultured adipocytes. Although AG did not directly alter lipolytic activity in human adipocytes, it inhibited benzylamine-induced antilipolysis via SSAO (but not NO synthase) inhibition. When AG was i.p. administered to obese Zucker rats (270 micromol kg(-1)day(-1) for 3 weeks), treated rats lost their capacity to oxidize benzylamine in a SSAO-dependent manner in adipose tissues and in cerebral vessels. Monoamine oxidase activity was unmodified in liver, skeletal muscles or adipose tissues and tended to increase in brain vessels. AG-treatment did not change body weight gain or hyperinsulinemic state of obese rats but slightly reduced subcutaneous fat deposition. AG did not modify insulin responsiveness in adipocytes but impaired the effects of SSAO substrates, such as glucose transport activation and lipolysis inhibition by methylamine or benzylamine plus vanadate. These results show that complete impairment of SSAO activity produced by AG-treatment in obese rats was likely responsible for a weak limitation of fat deposition. Previously proposed for prophylaxis in diabetes, AG may be useful for treating obesity via its SSAO blocking properties.


Subject(s)
Adipocytes/drug effects , Adipose Tissue, White/drug effects , Amine Oxidase (Copper-Containing)/antagonists & inhibitors , Guanidines/pharmacology , Obesity/prevention & control , 3T3 Cells , Adipocytes/cytology , Adipocytes/metabolism , Adipose Tissue, White/metabolism , Adult , Amine Oxidase (Copper-Containing)/metabolism , Animals , Benzylamines/metabolism , Body Fat Distribution , Brain/drug effects , Brain/metabolism , Cells, Cultured , Enzyme Inhibitors/pharmacology , Female , Humans , Insulin/pharmacology , Liver/drug effects , Liver/metabolism , Mice , Monoamine Oxidase/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , Obesity/metabolism , Obesity/physiopathology , Rats , Rats, Zucker , Semicarbazides/pharmacology , Tyramine/metabolism
6.
J. physiol. biochem ; 62(2): 113-123, jun. 2006.
Article in English | IBECS | ID: ibc-123005

ABSTRACT

Adipocytes express two types of amine oxidases: the cell surface semicarbazidesensitive amine oxidase (SSAO) and the mitochondrial monoamine oxidase (MAO). In human abdominal subcutaneous adipose tissue, it has been reported that SSAO substrates stimulate glucose transport and inhibit lipolysis while MAO activity is decreased in obese patients when compared to age-matched controls. However, no information has been reported on visceral WAT. To further investigate the obesity-induced regulations of MAO and SSAO in white adipose tissue (WAT) from different anatomical locations, enzyme activities and mRNA abundance have been determined on tissue biopsies from control and high-fat fed dogs, an obesity model already described to be associated with arterial hypertension and hyperinsulinemia. MAO activity was increased in the enlarged omental WAT of diet-induced obese dogs, but not in their mesenteric WAT, another intra-abdominal fat depot. Subcutaneous WAT did not exhibit any change in MAO activity, as did the richest MAO-containing tissue: liver. Similarly, SSAO was increased in omental WAT of diet-induced obese dogs, but was not modified in other WAT and in aorta. The increase in SSAO activity observed in omental WAT likely results from an increased expression of the AOC3 gene since mRNA abundance and maximal benzylamine oxidation velocity were increased. Finally, plasma SSAO was decreased in obese dogs. Although the observed regulations differ from those found in subcutaneous WAT of obese patients, this canine model shows a tissue- and site-specific regulation of peripheral MAO and SSAO in obesity (AU)


Los adipocitos expresan dos tipos de amino-oxidasa: la amino oxidasa sensible a semicarbazida de la superficie celular (SSAO) y la monoamino oxidasa mitocondrial (MAO). En el tejido adiposo subcutáneo abdominal de humanos se ha descrito que los sustratos de la SSAO estimulan el transporte de glucosa e inhiben la lipólisis, mientras que la actividad MAO disminuye en pacientes obesos cuando se compara con controles de su propia edad. Sin embargo, no existe información sobre lo que ocurre en el tejido adiposo visceral. Se investiga, por tanto, sobre la influencia de la obesidad en la regulación de la MAO y SSAO en el tejido adiposo blanco (WAT) de diferentes localizaciones anatomicas, su actividad enzimatica y la riqueza de RNAm en biopsias tisulares procedentes de perros control y tratados con dieta rica en grasa. Este modelo de obesidad ya había sido previamente descrito asociado a hipertensión arterial e hiperinsulinemia. La actividad MAO se incrementó en WAT omental hipertrofiado de perros tratados con dieta rica en grasa, pero este efecto no se apreciaba en su correspondiente tejido adiposo mesentérico, otro depósito graso intra-abdominal. En el tejido adiposo subcutáneo no se pusieron de manifiesto cambios en la actividad MAO, ni tampoco en un tejido como el hígado, muy rico en MAO.De forma similar, la actividad SSAO se incrementó en el WAT omental de perros con obesidad inducida por la dieta, pero no se modificaba en otros WAT y en la aorta. El incremento encontrado en la actividad de la SSAO en el WAT (..) (AU)


Subject(s)
Animals , Dogs , Monoamine Oxidase/isolation & purification , Semicarbazides/pharmacokinetics , Adipocytes, White/physiology , Obesity/physiopathology , Glucose Transport Proteins, Facilitative/physiology , Lipolysis/physiology , Protective Agents/pharmacokinetics , Disease Models, Animal
7.
J Physiol Biochem ; 62(2): 113-23, 2006 Jun.
Article in English | MEDLINE | ID: mdl-17217165

ABSTRACT

Adipocytes express two types of amine oxidases: the cell surface semicarbazide-sensitive amine oxidase (SSAO) and the mitochondrial monoamine oxidase (MAO). In human abdominal subcutaneous adipose tissue, it has been reported that SSAO substrates stimulate glucose transport and inhibit lipolysis while MAO activity is decreased in obese patients when compared to age-matched controls. However, no information has been reported on visceral WAT. To further investigate the obesity-induced regulations of MAO and SSAO in white adipose tissue (WAT) from different anatomical locations, enzyme activities and mRNA abundance have been determined on tissue biopsies from control and high-fat fed dogs, an obesity model already described to be associated with arterial hypertension and hyperinsulinemia. MAO activity was increased in the enlarged omental WAT of diet-induced obese dogs, but not in their mesenteric WAT, another intra-abdominal fat depot. Subcutaneous WAT did not exhibit any change in MAO activity, as did the richest MAO-containing tissue: liver. Similarly, SSAO was increased in omental WAT of diet-induced obese dogs, but was not modified in other WAT and in aorta. The increase in SSAO activity observed in omental WAT likely results from an increased expression of the AOC3 gene since mRNA abundance and maximal benzylamine oxidation velocity were increased. Finally, plasma SSAO was decreased in obese dogs. Although the observed regulations differ from those found in subcutaneous WAT of obese patients, this canine model shows a tissue- and site-specific regulation of peripheral MAO and SSAO in obesity.


Subject(s)
Adipose Tissue, White/enzymology , Amine Oxidase (Copper-Containing)/metabolism , Dietary Fats/administration & dosage , Monoamine Oxidase/metabolism , Obesity/enzymology , Animals , Body Weight , Dogs , Intra-Abdominal Fat/enzymology , Kinetics , Male , Omentum/enzymology , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...