Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Biomater Sci ; 7(6): 2511-2519, 2019 May 28.
Article in English | MEDLINE | ID: mdl-30968104

ABSTRACT

Herein, we demonstrate the use of lysozyme (Lys) as a model to fabricate a protein carrier system based on gold nanoparticles (AuNPs) via the Layer-by-Layer (LbL) technology. Poly(ethyleneimine) (PEI) and poly(sodium 4-styrenesulfonate) (PSS) were used as cationic and anionic polymers respectively to grow oppositely charged layers. Mild aqueous conditions were utilized to avoid protein denaturation and activity instead of organic solvents that have been used in other encapsulation systems. Two different strategies were used: (A) lysozyme acting as a reducing and stabilizing agent in the formation of AuNPs at a temperature of 45 ± 2 °C followed by only two subsequent polymeric layers deposited by LbL, and (B) citrate acting as a reducing agent prior to stabilization of the AuNPs by mercaptoundecanoic acid. Dynamic light scattering, UV-vis spectroscopy, IR spectroscopy and transmission electron microscopy were used to characterize the nanoconjugates. Furthermore, the enzymatic activity of the resulting protein/nanoparticle conjugates was evaluated using the bacteria Micrococcus lysodeikticus as a substrate.


Subject(s)
Biocompatible Materials/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Muramidase/chemistry , Biocompatible Materials/chemical synthesis , Chemistry Techniques, Synthetic , Citric Acid/chemistry , Micrococcus/enzymology , Models, Molecular , Molecular Conformation , Muramidase/metabolism , Polyethyleneimine/chemistry , Polystyrenes/chemistry , Temperature
2.
Materials (Basel) ; 10(12)2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29244716

ABSTRACT

Two-dimensional fluorescence difference spectroscopy (2-D FDS) was used to determine the unique spectral signatures of zinc oxide (ZnO), magnesium oxide (MgO), and 5% magnesium zinc oxide nanocomposite (5% Mg/ZnO) and was then used to demonstrate the change in spectral signature that occurs when physiologically important proteins, such as angiotensin-converting enzyme (ACE) and ribonuclease A (RNase A), interact with ZnO nanoparticles (NPs). When RNase A is bound to 5% Mg/ZnO, the intensity is quenched, while the intensity is magnified and a significant shift is seen when torula yeast RNA (TYRNA) is bound to RNase A and 5% Mg/ZnO. The intensity of 5% Mg/ZnO is quenched also when thrombin and thrombin aptamer are bound to the nanocomposite. These data indicate that RNA-protein interaction can occur unimpeded on the surface of NPs, which was confirmed by gel electrophoresis, and importantly that the change in fluorescence excitation, emission, and intensity shown by 2-D FDS may indicate specificity of biomolecular interactions.

3.
PeerJ ; 5: e3721, 2017.
Article in English | MEDLINE | ID: mdl-28828284

ABSTRACT

The growing use of carbon nanotubes (CNTs) in industrial and consumer products raises important questions about their environmental fate and impact on prokaryotes. In the environment, CNTs are exposed to a variety of conditions (e.g., UV light) that could lead to decomposition and changes in their chemical properties. Therefore, the potential cytotoxic effect of both pristine and artificially aged carboxyl functionalized CNTRENE® C100LM CNTmaterial at neutral and acidic conditions on Escherichia coli K12 was analyzed using a minimal inhibitory concentration (MIC) assay, which also allowed monitoring of non-lethal growth effects. However, there were no observable MIC or significant changes in growth behavior in E. coli K12 when exposed to pristine or aged CNTs. Exposure to pristine CNTRENE® C100LM CNT material did not appear to influence cell morphology or damage the cells when examined by electron microscopy. In addition, RNA sequencing revealed no observable regulatory changes in typical stress response pathways. This is surprising considering that previous studies have claimed high cytotoxicity of CNTs, including carboxyl functionalized single-walled CNTs, and suggest that other factors such as trace heavy metals or other impurities are likely responsible for many of the previously reported cytotoxicity in E. coli and possibly other microorganisms.

4.
J Biomed Nanotechnol ; 13(2): 221-31, 2017 Feb.
Article in English | MEDLINE | ID: mdl-29377653

ABSTRACT

Biomedical applications for metal and metal oxide nanoparticles are rapidly increasing. Here their functional impact on two well-characterized model enzymes, Luciferase (Luc) or ß-galactosidase (ß-Gal) was quantitatively compared. Nickel oxide nanoparticle (NiO-NP) activated ß-Gal (>400% control) and boron carbide nanoparticle (B4C-NP) inhibited Luc(<10% control), whereas zinc oxide (ZnO-NP) and cobalt oxide (Co3O4-NP) activated ß-Gal to a lesser extent and magnesium oxide (MgO) moderately inhibited both enzymes. Melanoma specific killing was in the order; ZnO > B4C ≥ Cu > MgO > Co3O4 > Fe2O3 > NiO, ZnO-NP inhibiting B16F10 and A375 cells as well as ERK enzyme (>90%) and several other cancer-associated kinases (AKT, CREB, p70S6K). ZnO-NP or nanobelt (NB) serve as photoluminescence (PL) cell labels and inhibit 3-D multi-cellular tumor spheroid (MCTS) growth and were tested in a mouse melanoma model. These results demonstrate nanoparticle and enzyme specific biochemical activity and suggest their utility as new tools to explore the important model metastatic foci 3-D environment and their chemotherapeutic potential.


Subject(s)
Antineoplastic Agents/pharmacology , Melanoma, Experimental/metabolism , Metal Nanoparticles/chemistry , Spheroids, Cellular/drug effects , Zinc Oxide/pharmacology , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Luciferases/analysis , Luciferases/drug effects , Luciferases/metabolism , Metals, Heavy/pharmacology , Mice , Zinc Oxide/chemistry , beta-Galactosidase/analysis , beta-Galactosidase/drug effects , beta-Galactosidase/metabolism
5.
J Nanosci Nanotechnol ; 16(5): 5207-17, 2016 May.
Article in English | MEDLINE | ID: mdl-27483901

ABSTRACT

Carbon nanomaterials (CNMs), which include carbon nanotubes (CNTs) and their derivatives, have diverse technological and biomedical applications. The potential toxicity of CNMs to cells and tissues has become an important emerging question in nanotechnology. To assess the toxicity of CNTs and fullerenol C60(OH)24, we in the present work used the budding yeast Saccharomyces cerevisiae, one of the simplest eukaryotic organisms that share fundamental aspects of eukaryotic cell biology. We found that treatment with CNMs, regardless of their physical shape, negatively affected the growth rates, end-point cell densities and doubling times of CNM-exposed yeast cells when compared to unexposed cells. To investigate potential mechanisms behind the CNMs-induced growth defects, we performed RNA-Seq dependent transcriptional analysis and constructed global gene expression profiles of fullerenol C60(OH)24- and CNT-treated cells. When compared to non-treated control cells, CNM-treated cells displayed differential expression of genes whose functions are implicated in membrane transporters and stress response, although differentially expressed genes were not consistent between CNT- and fullerenol C60(OH)24-treated groups, leading to our conclusion that CNMs could serve as environmental toxic factors to eukaryotic cells.

6.
J Environ Manage ; 129: 410-3, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-23995508

ABSTRACT

We demonstrate the use of cysteine-modified polymer nanofibers for the rapid and efficient removal of Cr(III) from real tannery waste water samples. Various parameters such as pH, load of nanofibers and time of exposure were optimized to achieve maximum removal. The optimum parameters were found to be 0.1 mg of nanofibers per mL of tannery waste water with a pH of 5.5 and an exposure time of 45 min. Almost 99% Cr(III) was removed at these ideal conditions thus demonstrating the efficacy of our material. The maximum removal capacity at these ideal conditions was estimated to be approximately 1.75 g of chromium/gram of polymeric material. This is probably due to a variety of factors including the apparent high surface to volume ratio exhibited by these nanofibers and also due to the availability of numerous cysteine groups that are known to have high binding affinities with heavy metal ions. These nanoscale polymeric materials show great potential towards the removal of heavy metal cations from waste waters.


Subject(s)
Chromium/chemistry , Nanofibers/chemistry , Polymers/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Industrial Waste/analysis , Ions/chemistry , Spectrophotometry, Atomic , Tanning
7.
Electrochim Acta ; 97: 99-104, 2013 May 01.
Article in English | MEDLINE | ID: mdl-25684785

ABSTRACT

We describe the synthesis of zinc oxide (ZnO) nanoparticles and demonstrate their attachment to multiwalled carbon tubes, resulting in a composite with a unique synergistic effect. Morphology and size of ZnO nanostructures were controlled using hydrothermal synthesis, varying the hydrothermal treatment temperature, prior to attachment to carboxylic acid functionalized multi-walled carbon nanotubes for sensing applications. A strong dependence of electrocatalytic activity on nanosized ZnO shape was shown. High activity for H2O2 reduction was achieved when nanocomposite precursors with a roughly semi-spherical morphology (no needle-like particles present) formed at 90 °C. A 2.4-fold increase in cyclic voltammetry current accompanied by decrease in overpotential from the composites made from the nanosized, needle-like-free ZnO shapes was observed as compared to those composites produced from needle-like shaped ZnO. Electrocatalytic activity varied with pH, maximizing at pH 7.4. A stable, linear response for H2O2 concentrations was observed in the 1-20 mM concentration range.

8.
Langmuir ; 28(8): 3860-70, 2012 Feb 28.
Article in English | MEDLINE | ID: mdl-22220841

ABSTRACT

In this study, manganese oxide (MnO) nanorods and its association with polyamidoamine dendrimer (PAMAM) and macromolecular RNA were analyzed. Because manganese is found naturally in cells and tissues and binds proteins and nucleic acids, nanomaterials derived from manganese, such as first generation MnO, may have potential as a biocompatible delivery agent for therapeutic or diagnostic biomedical applications. Nucleic acids have a powerful influence over cell processes, such as gene transcription and RNA processing; however, macromolecular RNA is particularly difficult to stabilize as a nanoparticle and to transport across cell membranes while maintaining structure and function. PAMAM is a cationic, branching dendrimer known to form strong complexes with nucleic acids and to protect them from degradation and is also considered to be a cell penetrating material. There is currently much interest in polyinosinic:polycytidylic RNA (poly I:C) because of its potent and specific immunogenic properties and as a solo or combination therapy. In order to address this potential, here, as a first step, we used PAMAM to attach poly I:C onto MnO nanorods. Morphology of the MnO nanorods was examined by field emission scanning electron microscopy (FESEM) and their composition by energy dispersive X-ray microanalysis (EDX). Evidence was generated for RNA:PAMAM:MnO nanorod binding by a gel shift assay using gel electrophoresis, a sedimentation assay using UV spectroscopy, and zeta potential shifts using dynamic laser light scattering. The data suggest that RNA was successfully attached to the MnO nanorods using PAMAM, and this suggestion was supported by direct visualization of the ternary complexes with FESEM characterizations. In order to confirm that the associations were biocompatible and taken up by cells, MTT assays were carried out to assess the metabolic activity of HeLa cells after incubation with the complexes and appropriate controls. Subsequently, we performed transfection assays using PAMAM:MnO complexes with pDNA encoding a green fluorescent protein reporter gene instead of RNA. The results suggest that the complexes had minimal impact on metabolic activity and were readily taken up by cells, and the fluorescent protein was expressed. From the evidence, we conclude that complexes of PAMAM:MnO interact with nucleic acids to form associations that are well-tolerated and readily taken up by cells.


Subject(s)
DNA/chemistry , Dendrimers/chemistry , Manganese Compounds/chemistry , Nanotubes/chemistry , Oxides/chemistry , Plasmids/chemistry , Polyamines/chemistry , RNA/chemistry
9.
Analyst ; 136(21): 4383-91, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-21894336

ABSTRACT

This article reviews applications of nanoscale carbon-based materials in heavy metal sensing and detection. These materials, including single-walled carbon nanotubes, multi-walled carbon nanotubes and carbon nanofibers among others, have unique and tunable properties enabling applications in various fields spanning from health, electronics and the environment sector. Specifically, we highlight the unique properties of these materials that enable their applications in the sorption and preconcentration of heavy metals ions prior to detection by spectroscopic, chromatographic and electrochemical techniques. We also discuss their distinct properties that enable them to be used as novel electrode materials in sensing and detection. The fabrication and modification of these electrodes is discussed in detail and their applications in various electrochemical techniques such as voltammetric stripping analysis, potentiometric stripping analysis, field effect transistor-based devices and electrical impedance are critically reviewed. Perspectives and futures trends in the use of these materials in heavy metal sensing and detection will also be highlighted.


Subject(s)
Biosensing Techniques , Metals, Heavy/analysis , Nanocomposites , Biosensing Techniques/instrumentation , Electrochemistry/methods , Electrodes , Electronics/methods , Metals, Heavy/chemistry , Nanofibers , Nanotubes, Carbon/chemistry , Potentiometry/methods
10.
Nanotechnol Sci Appl ; 3: 53-63, 2010 Sep 20.
Article in English | MEDLINE | ID: mdl-24198471

ABSTRACT

Nanotechnology has virtually exploded in the last few years with seemingly limitless opportunity across all segments of our society. If gene and RNA therapy are to ever realize their full potential, there is a great need for nanomaterials that can bind, stabilize, and deliver these macromolecular nucleic acids into human cells and tissues. Many researchers have turned to gold nanomaterials, as gold is thought to be relatively well tolerated in humans and provides an inert material upon which nucleic acids can attach. Here, we review the various strategies for associating macromolecular nucleic acids to the surface of gold nanoparticles (GNPs), the characterization chemistries involved, and the potential advantages of GNPs in terms of stabilization and delivery.

11.
Anal Bioanal Chem ; 393(4): 1225-31, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19115054

ABSTRACT

We report the electrochemical deposition of poly(pyrrolepropylic acid) nanowires, their covalent modification with antibodies and their conversion into potential functional sensor devices. The nanowires and the devices were characterised by optical microscopy, fluorescence microscopy, electron microscopy and electrical measurements. Fluorescence images, current-voltage (I-V) profiles and real-time sensing measurements demonstrated a rapid and highly sensitive and selective detection of human serum albumin (HSA), a substance that has been used to diagnose incipient renal disease. The detection is based on the selective binding of HSA onto anti-HSA that is covalently attached to the nanowires. The binding changes the electrical properties of the nanowires thus enabling the real-time detection. Whilst the utility of the research was demonstrated for protein binding/detection, the technology could easily be designed for the detection of other analytes by the modification of polymer nanowires with other analyte-specific molecules/biomolecules. Therefore, the technology has the potential to positively impact broad analytical applications in the biomedical, environmental and other sectors.


Subject(s)
Biosensing Techniques , Nanowires , Polymers , Electrochemistry , Humans , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Sensitivity and Specificity , Serum Albumin/analysis
12.
Anal Sci ; 24(9): 1105-10, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18781020

ABSTRACT

Layer by layer films of protein and redox polymer were constructed and used to simultaneously analyze ascorbic acid and hydrogen peroxide. The films were made using hemoglobin and poly[4-vinylpyridine Os(bipyridine)(2)Cl]-co-ethylamine (Pos-Ea). The film growth was monitored using cyclic voltammetry, quartz crystal microbalance (QCM) and atomic force microscopy (AFM). Reversible pairs of oxidation-reduction peaks were observed using cyclic voltammetry corresponding to the Os(II)/Os(III) from redox polymer and HbFe(III)/HbFe(II) redox couples at 0.35 and -0.25 V vs. Ag/AgCl, respectively. The two redox centers were independent of each other. This enabled the simultaneous and independent determination of ascorbic acid and hydrogen. Peak currents were linearly related to concentration for both analytes in a mixture. The linear range of ascorbic acid was 0-1 mM (R(2) = 0.9996, n = 5) at scan rate of 50 mV s(-1) (sensitivity 3.5 microA/mM) while hydrogen peroxide linear range was 1.0-10.0 microM (R(2) = 0.991, n = 6) with sensitivity of 1.85 microA/microM.


Subject(s)
Ascorbic Acid/analysis , Hemoglobins/chemistry , Hydrogen Peroxide/analysis , Organometallic Compounds/chemistry , Polymers/chemistry , Polyvinyls/chemistry , Catalysis , Electrochemistry , Humans , Hydrogen Peroxide/chemistry , Microscopy, Atomic Force , Oxidation-Reduction , Oxygen/chemistry , Quartz , Time Factors
13.
J Environ Monit ; 10(6): 703-12, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18528536

ABSTRACT

Environmental security is one of the fundamental requirements of our well being. However, it still remains a major global challenge. Therefore, in addition to reducing and/or eliminating the amounts of toxic discharges into the environment, there is need to develop techniques that can detect and monitor these environmental pollutants in a sensitive and selective manner to enable effective remediation. Because of their integrated nature, biosensors are ideal for environmental monitoring and detection as they can be portable and provide selective and sensitive rapid responses in real time. In this review we discuss the main concepts behind the development of biosensors that have most relevant applications in the field of environmental monitoring and detection. We also review and document recent trends and challenges in biosensor research and development particularly in the detection of species of environmental significance such as organophosphate nerve agents, heavy metals, organic contaminants, pathogenic microorganisms and their toxins. Special focus will be given to the trends that have the most promising applications in environmental security. We conclude by highlighting the directions towards which future biosensors research in environmental security sector might proceed.


Subject(s)
Biosensing Techniques/methods , Environmental Monitoring/methods , Environmental Pollutants/analysis , Animals , Bacterial Toxins/analysis , Bacterial Toxins/toxicity , Biosensing Techniques/instrumentation , Chemical Warfare Agents/analysis , Chemical Warfare Agents/toxicity , Environmental Monitoring/instrumentation , Environmental Pollutants/toxicity , Humans , Metals, Heavy/analysis , Metals, Heavy/toxicity , Organic Chemicals/analysis , Organic Chemicals/toxicity , Organophosphorus Compounds/analysis , Organophosphorus Compounds/toxicity , Public Health , Risk Assessment
14.
Langmuir ; 21(15): 6891-9, 2005 Jul 19.
Article in English | MEDLINE | ID: mdl-16008401

ABSTRACT

This paper describes a new approach for the preparation of polyamic acid (PAA) composites containing Ag and Au nanoparticles. The composite film of PAA and metal particles were obtained upon electrodeposition of a PAA solution containing gold or silver salts with subsequent thermal treatment, while imidization to polyimide is prevented. The structural characterization of the films is provided by 1H NMR and Fourier transform infrared spectroscopy (FTIR), while the presence of metallic nanoparticles within the polymeric matrix was confirmed by scanning electron microscopy (SEM), cyclic voltammetry (CV), energy-dispersive X-ray analysis (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). This approach utilizes the unique reactivity of PAA by preventing the cyclization of the reactive soluble intermediate into polyimides at low temperature to design polymer-assisted nanostructured materials. The ability to prevent the cyclization process should enable the design of a new class of electrode materials by use of thermal reduction and/or electrodeposition.


Subject(s)
Benzene Derivatives/chemistry , Electrodes , Polymers/chemistry , Nanotechnology
15.
J Chem Inf Comput Sci ; 44(2): 499-507, 2004.
Article in English | MEDLINE | ID: mdl-15032529

ABSTRACT

The need for rapid and accurate detection systems is expanding and the utilization of cross-reactive sensor arrays to detect chemical warfare agents in conjunction with novel computational techniques may prove to be a potential solution to this challenge. We have investigated the detection, prediction, and classification of various organophosphate (OP) nerve agent simulants using sensor arrays with a novel learning scheme known as support vector machines (SVMs). The OPs tested include parathion, malathion, dichlorvos, trichlorfon, paraoxon, and diazinon. A new data reduction software program was written in MATLAB V. 6.1 to extract steady-state and kinetic data from the sensor arrays. The program also creates training sets by mixing and randomly sorting any combination of data categories into both positive and negative cases. The resulting signals were fed into SVM software for "pairwise" and "one" vs all classification. Experimental results for this new paradigm show a significant increase in classification accuracy when compared to artificial neural networks (ANNs). Three kernels, the S2000, the polynomial, and the Gaussian radial basis function (RBF), were tested and compared to the ANN. The following measures of performance were considered in the pairwise classification: receiver operating curve (ROC) Az indices, specificities, and positive predictive values (PPVs). The ROC Az) values, specifities, and PPVs increases ranged from 5% to 25%, 108% to 204%, and 13% to 54%, respectively, in all OP pairs studied when compared to the ANN baseline. Dichlorvos, trichlorfon, and paraoxon were perfectly predicted. Positive prediction for malathion was 95%.

16.
Analyst ; 127(9): 1272-6, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12375856

ABSTRACT

This work describes a novel technique for the digestion of metals in solid matrices. The technique is called pressure assisted chelating extraction (PACE). In a typical procedure, a solid sample is placed in a stainless steel cell and is mixed with appropriate chelating agents. Using a programmed sequence of temperature, static time, pressure and thermal equilibration available in ASE 200, the metal is removed under moderate temperature (up to 200 degrees C) and pressure (up to 3000 psi). PACE achieves metal recovery that is equivalent to that of wet digestion techniques and also provides for a clean and safe operation by substituting the strong acids commonly used during wet digestion with chelating agents. It uses less solvents and significantly less time (minutes vs. hours) for metal digestion. PACE has been validated using certified standard reference materials (SRMs) including industrial sludge, buffalo river sediments and coal fly ash. The total time required to remove metals was approximately 20 min. Results show that the PACE system provides an ideal platform for efficient, rapid, and safe metal digestion. Good agreement between measured and reference values for Pb, Mn, and Cu were found with recoveries averaging between 80 and 101% and a relative standard deviation of less than 5%. This approach may provide an alternative digestion technique for environmental samples, alloys, biological materials and samples of geological importance. The potential advantage offered lies in non-destruction of the sample, automation and the exclusion of concentrated mineral acids during the digestion procedure.


Subject(s)
Chelating Agents , Environmental Pollutants/analysis , Trace Elements/analysis , Metals , Pressure , Sensitivity and Specificity , Spectrophotometry, Atomic , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...