Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Geroscience ; 45(5): 3079-3093, 2023 10.
Article in English | MEDLINE | ID: mdl-37814198

ABSTRACT

Limited research exists on the association between resting-state functional network connectivity in the brain and learning and memory processes in advanced age. This study examined within-network connectivity of cingulo-opercular (CON), frontoparietal control (FPCN), and default mode (DMN) networks, and verbal and visuospatial learning and memory in older adults. Across domains, we hypothesized that greater CON and FPCN connectivity would associate with better learning, and greater DMN connectivity would associate with better memory. A total of 330 healthy older adults (age range = 65-89) underwent resting-state fMRI and completed the Hopkins Verbal Learning Test-Revised (HVLT-R) and Brief Visuospatial Memory Test-Revised (BVMT-R) in a randomized clinical trial. Total and delayed recall scores were assessed from baseline data, and a learning ratio calculation was applied to participants' scores. Average CON, FPCN, and DMN connectivity values were obtained with CONN Toolbox. Hierarchical regressions controlled for sex, race, ethnicity, years of education, and scanner site, as this was a multi-site study. Greater within-network CON connectivity was associated with better verbal learning (HVLT-R Total Recall, Learning Ratio), visuospatial learning (BVMT-R Total Recall), and visuospatial memory (BVMT-R Delayed Recall). Greater FPCN connectivity was associated with better visuospatial learning (BVMT-R Learning Ratio) but did not survive multiple comparison correction. DMN connectivity was not associated with these measures of learning and memory. CON may make small but unique contributions to learning and memory across domains, making it a valuable target in future longitudinal studies and interventions to attenuate memory decline. Further research is necessary to understand the role of FPCN in learning and memory.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Aged , Aged, 80 and over , Brain/diagnostic imaging , Memory , Learning , Mental Recall
2.
Brain Stimul ; 16(3): 969-974, 2023.
Article in English | MEDLINE | ID: mdl-37279860

ABSTRACT

BACKGROUND: Transcranial direct current stimulation (tDCS) paired with cognitive training (CT) is widely investigated as a therapeutic tool to enhance cognitive function in older adults with and without neurodegenerative disease. Prior research demonstrates that the level of benefit from tDCS paired with CT varies from person to person, likely due to individual differences in neuroanatomical structure. OBJECTIVE: The current study aims to develop a method to objectively optimize and personalize current dosage to maximize the functional gains of non-invasive brain stimulation. METHODS: A support vector machine (SVM) model was trained to predict treatment response based on computational models of current density in a sample dataset (n = 14). Feature weights of the deployed SVM were used in a weighted Gaussian Mixture Model (GMM) to maximize the likelihood of converting tDCS non-responders to responders by finding the most optimum electrode montage and applied current intensity (optimized models). RESULTS: Current distributions optimized by the proposed SVM-GMM model demonstrated 93% voxel-wise coherence within target brain regions between the originally non-responders and responders. The optimized current distribution in original non-responders was 3.38 standard deviations closer to the current dose of responders compared to the pre-optimized models. Optimized models also achieved an average treatment response likelihood and normalized mutual information of 99.993% and 91.21%, respectively. Following tDCS dose optimization, the SVM model successfully predicted all tDCS non-responders with optimized doses as responders. CONCLUSIONS: The results of this study serve as a foundation for a custom dose optimization strategy towards precision medicine in tDCS to improve outcomes in cognitive decline remediation for older adults.


Subject(s)
Neurodegenerative Diseases , Transcranial Direct Current Stimulation , Humans , Aged , Transcranial Direct Current Stimulation/methods , Cognition , Brain/physiology , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...