Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Med Phys ; 51(4): 2398-2412, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38477717

ABSTRACT

BACKGROUND: Cone-beam CT (CBCT) has been extensively employed in industrial and medical applications, such as image-guided radiotherapy and diagnostic imaging, with a growing demand for quantitative imaging using CBCT. However, conventional CBCT can be easily compromised by scatter and beam hardening artifacts, and the entanglement of scatter and spectral effects introduces additional complexity. PURPOSE: The intertwined scatter and spectral effects within CBCT pose significant challenges to the quantitative performance of spectral imaging. In this work, we present the first attempt to develop a stationary spectral modulator with flying focal spot (SMFFS) technology as a promising, low-cost approach to accurately solving the x-ray scattering problem and physically enabling spectral imaging in a unified framework, and with no significant misalignment in data sampling of spectral projections. METHODS: To deal with the intertwined scatter-spectral challenge, we propose a novel scatter-decoupled material decomposition (SDMD) method for SMFFS, which consists of four steps in total, including (1) spatial resolution-preserved and noise-suppressed multi-energy "residual" projection generation free from scatter, based on a hypothesis of scatter similarity; (2) first-pass material decomposition from the generated multi-energy residual projections in non-penumbra regions, with a structure similarity constraint to overcome the increased noise and penumbra effect; (3) scatter estimation for complete data; and (4) second-pass material decomposition for complete data by using a multi-material spectral correction method. Monte Carlo simulations of a pure-water cylinder phantom with different focal spot deflections are conducted to validate the scatter similarity hypothesis. Both numerical simulations using a clinical abdominal CT dataset, and physics experiments on a tabletop CBCT system using a Gammex multi-energy CT phantom and an anthropomorphic chest phantom, are carried out to demonstrate the feasibility of CBCT spectral imaging with SMFFS and our proposed SDMD method. RESULTS: Monte Carlo simulations show that focal spot deflections within a range of 2 mm share quite similar scatter distributions overall. Numerical simulations demonstrate that SMFFS with SDMD method can achieve better material decomposition and CT number accuracy with fewer artifacts. In physics experiments, for the Gammex phantom, the average error of the mean values ( E RMSE ROI $E^{\text{ROI}}_{\text{RMSE}}$ ) in selected regions of interest (ROIs) of virtual monochromatic image (VMI) at 70 keV is 8 HU in SMFFS cone-beam (CB) scan, and 19 and 210 HU in sequential 80/120 kVp (dual kVp, DKV) CB scan with and without scatter correction, respectively. For the chest phantom, the E RMSE ROI $E^{\text{ROI}}_{\text{RMSE}}$ in selected ROIs of VMIs is 12 HU for SMFFS CB scan, and 15 and 438 HU for sequential 80/140 kVp CB scan with and without scatter correction, respectively. Also, the non-uniformity among selected regions of the chest phantom is 14 HU for SMFFS CB scan, and 59 and 184 HU for the DKV CB scan with and without a traditional scatter correction method, respectively. CONCLUSIONS: We propose a SDMD method for CBCT with SMFFS. Our preliminary results show that SMFFS can enable spectral imaging with simultaneous scatter correction for CBCT and effectively improve its quantitative imaging performance.


Subject(s)
Spiral Cone-Beam Computed Tomography , Image Processing, Computer-Assisted/methods , Scattering, Radiation , Physical Phenomena , Phantoms, Imaging , Cone-Beam Computed Tomography/methods , Artifacts , Algorithms
2.
Med Phys ; 51(1): 224-238, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37401203

ABSTRACT

BACKGROUND: Photon counting detectors (PCDs) provide higher spatial resolution, improved contrast-to-noise ratio (CNR), and energy discriminating capabilities. However, the greatly increased amount of projection data in photon counting computed tomography (PCCT) systems becomes challenging to transmit through the slip ring, process, and store. PURPOSE: This study proposes and evaluates an empirical optimization algorithm to obtain optimal energy weights for energy bin data compression. This algorithm is universally applicable to spectral imaging tasks including 2 and 3 material decomposition (MD) tasks and virtual monoenergetic images (VMIs). This method is simple to implement while preserving spectral information for the full range of object thicknesses and is applicable to different PCDs, for example, silicon detectors and CdTe detectors. METHODS: We used realistic detector energy response models to simulate the spectral response of different PCDs and an empirical calibration method to fit a semi-empirical forward model for each PCD. We numerically optimized the optimal energy weights by minimizing the average relative Cramér-Rao lower bound (CRLB) due to the energy-weighted bin compression, for MD and VMI tasks over a range of material area density ρ A , m ${\rho }_{A,m}$ (0-40 g/cm2 water, 0-2.16 g/cm2 calcium). We used Monte Carlo simulation of a step wedge phantom and an anthropomorphic head phantom to evaluate the performance of this energy bin compression method in the projection domain and image domain, respectively. RESULTS: The results show that for 2 MD, the energy bin compression method can reduce PCCT data size by 75% and 60%, with an average variance penalty of less than 17% and 3% for silicon and CdTe detectors, respectively. For 3 MD tasks with a K-edge material (iodine), this method can reduce the data size by 62.5% and 40% with an average variance penalty of less than 12% and 13% for silicon and CdTe detectors, respectively. CONCLUSIONS: We proposed an energy bin compression method that is broadly applicable to different PCCT systems and object sizes, with high data compression ratio and little loss of spectral information.


Subject(s)
Cadmium Compounds , Quantum Dots , X-Rays , Silicon , Tellurium , Photons , Phantoms, Imaging
3.
Med Phys ; 51(4): 2621-2632, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37843975

ABSTRACT

BACKGROUND: Conventional x-ray imaging and fluoroscopy have limitations in quantitation due to several challenges, including scatter, beam hardening, and overlapping tissues. Dual-energy (DE) imaging, with its capability to quantify area density of specific materials, is well-suited to address such limitations, but only if the dual-energy projections are acquired with perfect spatial and temporal alignment and corrected for scatter. PURPOSE: In this work, we propose single-shot quantitative imaging (SSQI) by combining the use of a primary modulator (PM) and dual-layer (DL) detector, which enables motion-free DE imaging with scatter correction in a single exposure. METHODS: The key components of our SSQI setup include a PM and DL detector, where the former enables scatter correction for the latter while the latter enables beam hardening correction for the former. The SSQI algorithm allows simultaneous recovery of two material-specific images and two scatter images using four sub-measurements from the PM encoding. The concept was first demonstrated using simulation of chest x-ray imaging for a COVID patient. For validation, we set up SSQI geometry on our tabletop system and imaged acrylic and copper slabs with known thicknesses (acrylic: 0-22.5 cm; copper: 0-0.9 mm), estimated scatter with our SSQI algorithm, and compared the material decomposition (MD) for different combinations of the two materials with ground truth. Second, we imaged an anthropomorphic chest phantom containing contrast in the coronary arteries and compared the MD with and without SSQI. Lastly, to evaluate SSQI in dynamic applications, we constructed a flow phantom that enabled dynamic imaging of iodine contrast. RESULTS: Our simulation study demonstrated that SSQI led to accurate scatter correction and MD, particularly for smaller focal blur and finer PM pitch. In the validation study, we found that the root mean squared error (RMSE) of SSQI estimation was 0.13 cm for acrylic and 0.04 mm for copper. For the anthropomorphic phantom, direct MD resulted in incorrect interpretation of contrast and soft tissue, while SSQI successfully distinguished them quantitatively, reducing RMSE in material-specific images by 38%-92%. For the flow phantom, SSQI was able to perform accurate dynamic quantitative imaging, separating contrast from the background. CONCLUSIONS: We demonstrated the potential of SSQI for robust quantitative x-ray imaging. The integration of SSQI is straightforward with the addition of a PM and upgrade to a DL detector, which may enable its widespread adoption, including in techniques such as radiography and dynamic imaging (i.e., real-time image guidance and cone-beam CT).


Subject(s)
Copper , Tomography, X-Ray Computed , Humans , X-Rays , Tomography, X-Ray Computed/methods , Cone-Beam Computed Tomography , Phantoms, Imaging , Algorithms , Scattering, Radiation
4.
Radiology ; 306(3): e221257, 2023 03.
Article in English | MEDLINE | ID: mdl-36719287

ABSTRACT

Filtered back projection (FBP) has been the standard CT image reconstruction method for 4 decades. A simple, fast, and reliable technique, FBP has delivered high-quality images in several clinical applications. However, with faster and more advanced CT scanners, FBP has become increasingly obsolete. Higher image noise and more artifacts are especially noticeable in lower-dose CT imaging using FBP. This performance gap was partly addressed by model-based iterative reconstruction (MBIR). Yet, its "plastic" image appearance and long reconstruction times have limited widespread application. Hybrid iterative reconstruction partially addressed these limitations by blending FBP with MBIR and is currently the state-of-the-art reconstruction technique. In the past 5 years, deep learning reconstruction (DLR) techniques have become increasingly popular. DLR uses artificial intelligence to reconstruct high-quality images from lower-dose CT faster than MBIR. However, the performance of DLR algorithms relies on the quality of data used for model training. Higher-quality training data will become available with photon-counting CT scanners. At the same time, spectral data would greatly benefit from the computational abilities of DLR. This review presents an overview of the principles, technical approaches, and clinical applications of DLR, including metal artifact reduction algorithms. In addition, emerging applications and prospects are discussed.


Subject(s)
Artificial Intelligence , Deep Learning , Humans , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Algorithms , Image Processing, Computer-Assisted/methods
5.
Article in English | MEDLINE | ID: mdl-36560977

ABSTRACT

Conventional x-ray imaging provides little quantitative information due to scatter, beam hardening, and overlaying tissues. A single-shot quantitative x-ray imaging (SSQI) method was previously developed to quantify material-specific densities in x-ray imaging by combining the use of a primary modulator (PM) and dual-layer (DL) detector. The feasibility of this concept was demonstrated with simulations using an iterative patch-based method. In this work, we propose a new algorithm pipeline for SSQI that enables accurate quantification and high computational efficiency. The DL images contain four measurements that are obtained behind the unattenuated and partially attenuated regions of the PM of each layer. Using the low-frequency property of scatter and a pre-calibrated material decomposition (MD), four unknowns (i.e., two scatter images and two material-specific images) are jointly recovered by directly solving four equations given by the four measurements. We tested this algorithm in simulations and further demonstrated its efficacy on chest phantom experiments. Through simulation, we show that the new method for MD is robust against scatter. Its performance improves with smaller PM pitch size and smaller focal spot blur. The RMSE in material-specific images compared to ground truth reduces by 52%-84% versus without scatter correction. For our experimental study, we successfully separated soft tissue and bone. The computational time for processing each view was ~8 s without optimization. The reported results further strengthen the potential of SSQI for widespread adoption, leading to quantitative imaging not only for x-ray imaging but also for real-time image guidance or cone-beam CT.

6.
J R Soc Interface ; 19(193): 20220403, 2022 08.
Article in English | MEDLINE | ID: mdl-35919981

ABSTRACT

The inability to detect early degenerative changes to the articular cartilage surface that commonly precede bulk osteoarthritic degradation is an obstacle to early disease detection for research or clinical diagnosis. Leveraging a known artefact that blurs tissue boundaries in clinical arthrograms, contrast agent (CA) diffusivity can be derived from computed tomography arthrography (CTa) scans. We combined experimental and computational approaches to study protocol variations that may alter the CTa-derived apparent diffusivity. In experimental studies on bovine cartilage explants, we examined how CA dilution and transport direction (absorption versus desorption) influence the apparent diffusivity of untreated and enzymatically digested cartilage. Using multiphysics simulations, we examined mechanisms underlying experimental observations and the effects of image resolution, scan interval and early scan termination. The apparent diffusivity during absorption decreased with increasing CA concentration by an amount similar to the increase induced by tissue digestion. Models indicated that osmotically-induced fluid efflux strongly contributed to the concentration effect. Simulated changes to spatial resolution, scan spacing and total scan time all influenced the apparent diffusivity, indicating the importance of consistent protocols. With careful control of imaging protocols and interpretations guided by transport models, CTa-derived diffusivity offers promise as a biomarker for early degenerative changes.


Subject(s)
Cartilage, Articular , Animals , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/metabolism , Cattle , Contrast Media/metabolism , Contrast Media/pharmacology , Tomography, X-Ray Computed/methods
7.
Med Phys ; 49(4): 2342-2354, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35128672

ABSTRACT

PURPOSE: This study developed and evaluated a fully convolutional network (FCN) for pediatric CT organ segmentation and investigated the generalizability of the FCN across image heterogeneities such as CT scanner model protocols and patient age. We also evaluated the autosegmentation models as part of a software tool for patient-specific CT dose estimation. METHODS: A collection of 359 pediatric CT datasets with expert organ contours were used for model development and evaluation. Autosegmentation models were trained for each organ using a modified FCN 3D V-Net. An independent test set of 60 patients was withheld for testing. To evaluate the impact of CT scanner model protocol and patient age heterogeneities, separate models were trained using a subset of scanner model protocols and pediatric age groups. Train and test sets were split to answer questions about the generalizability of pediatric FCN autosegmentation models to unseen age groups and scanner model protocols, as well as the merit of scanner model protocol or age-group-specific models. Finally, the organ contours resulting from the autosegmentation models were applied to patient-specific dose maps to evaluate the impact of segmentation errors on organ dose estimation. RESULTS: Results demonstrate that the autosegmentation models generalize to CT scanner acquisition and reconstruction methods which were not present in the training dataset. While models are not equally generalizable across age groups, age-group-specific models do not hold any advantage over combining heterogeneous age groups into a single training set. Dice similarity coefficient (DSC) and mean surface distance results are presented for 19 organ structures, for example, median DSC of 0.52 (duodenum), 0.74 (pancreas), 0.92 (stomach), and 0.96 (heart). The FCN models achieve a mean dose error within 5% of expert segmentations for all 19 organs except for the spinal canal, where the mean error was 6.31%. CONCLUSIONS: Overall, these results are promising for the adoption of FCN autosegmentation models for pediatric CT, including applications for patient-specific CT dose estimation.


Subject(s)
Image Processing, Computer-Assisted , Tomography, X-Ray Computed , Algorithms , Child , Humans , Image Processing, Computer-Assisted/methods , Radiometry , Thorax
8.
Med Phys ; 49(5): 3523-3528, 2022 May.
Article in English | MEDLINE | ID: mdl-35067940

ABSTRACT

PURPOSE: Organ autosegmentation efforts to date have largely been focused on adult populations, due to limited availability of pediatric training data. Pediatric patients may present additional challenges for organ segmentation. This paper describes a dataset of 359 pediatric chest-abdomen-pelvis and abdomen-pelvis Computed Tomography (CT) images with expert contours of up to 29 anatomical organ structures to aid in the evaluation and development of autosegmentation algorithms for pediatric CT imaging. ACQUISITION AND VALIDATION METHODS: The dataset collection consists of axial CT images in Digital Imaging and Communications in Medicine (DICOM) format of 180 male and 179 female pediatric chest-abdomen-pelvis or abdomen-pelvis exams acquired from one of three CT scanners at Children's Wisconsin. The datasets represent random pediatric cases based upon routine clinical indications. Subjects ranged in age from 5 days to 16 years, with a mean age of 7 years. The CT acquisition, contrast, and reconstruction protocols varied across the scanner models and patients, with specifications available in the DICOM headers. Expert contours were manually labeled for up to 29 organ structures per subject. Not all contours are available for all subjects, due to limited field of view or unreliable contouring due to high noise. DATA FORMAT AND USAGE NOTES: The data are available on The Cancer Imaging Archive (TCIA_ (https://www.cancerimagingarchive.net/) under the collection Pediatric-CT-SEG. The axial CT image slices for each subject are available in DICOM format. The expert contours are stored in a single DICOM RTSTRUCT file for each subject. The contour names are listed in Table 2. POTENTIAL APPLICATIONS: This dataset will enable the evaluation and development of organ autosegmentation algorithms for pediatric populations, which exhibit variations in organ shape and size across age. Automated organ segmentation from CT images has numerous applications including radiation therapy, diagnostic tasks, surgical planning, and patient-specific organ dose estimation.


Subject(s)
Abdomen , Tomography, X-Ray Computed , Abdomen/diagnostic imaging , Adult , Algorithms , Child , Female , Humans , Male , Pelvis/diagnostic imaging , Tomography Scanners, X-Ray Computed , Tomography, X-Ray Computed/methods
9.
Radiol Clin North Am ; 59(6): 967-985, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34689881

ABSTRACT

Machine learning (ML) and Artificial intelligence (AI) has the potential to dramatically improve radiology practice at multiple stages of the imaging pipeline. Most of the attention has been garnered by applications focused on improving the end of the pipeline: image interpretation. However, this article reviews how AI/ML can be applied to improve upstream components of the imaging pipeline, including exam modality selection, hardware design, exam protocol selection, data acquisition, image reconstruction, and image processing. A breadth of applications and their potential for impact is shown across multiple imaging modalities, including ultrasound, computed tomography, and MRI.


Subject(s)
Diagnostic Imaging/methods , Image Interpretation, Computer-Assisted/methods , Machine Learning , Radiology/methods , Humans
10.
J Med Imaging (Bellingham) ; 8(2): 023502, 2021 Mar.
Article in English | MEDLINE | ID: mdl-34368391

ABSTRACT

Purpose: The focal spot size and shape of an x-ray system are critical factors to the spatial resolution. Conventional approaches to characterizing the focal spot use specialized tools that usually require careful calibration. We propose an alternative to characterize the x-ray source's focal spot, simply using a rotating edge and flat-panel detector. Methods: An edge is moved to the beam axis, and an edge spread function (ESF) is obtained at a specific angle. Taking the derivative of the ESF provides the line spread function, which is the Radon transform of the focal spot in the direction parallel to the edge. By rotating the edge about the beam axis for 360 deg, we obtain a complete Radon transform, which is used for reconstructing the focal spot. We conducted a study on a clinical C-arm system with three focal spot sizes (0.3, 0.6, and 1.0 mm nominal size), then compared the focal spot imaged using the proposed method against the conventional pinhole approach. The full width at half maximum (FWHM) of the focal spots along the width and height of the focal spot were used for quantitative comparisons. Results: Using the pinhole method as ground truth, the proposed method accurately characterized the focal spot shapes and sizes. Quantitatively, the FWHM widths were 0.37, 0.65, and 1.14 mm for the pinhole method and 0.33, 0.60, and 1.15 mm for the proposed method for the 0.3, 0.6, and 1.0 mm nominal focal spots, respectively. Similar levels of agreement were found for the FWHM heights. Conclusions: The method uses a rotating edge to characterize the focal spot and could be automated in the future using a system's built-in collimator. The method could be included as part of quality assurance tests of image quality and tube health.

11.
Med Phys ; 48(10): 6482-6496, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34374461

ABSTRACT

PURPOSE: Metal artifact remains a challenge in cone-beam CT images. Many image domain-based segmentation methods have been proposed for metal artifact reduction (MAR), which require two-pass reconstruction. Such methods first segment metal from a first-pass reconstruction and then forward-project the metal mask to identify them in projections. These methods work well in general but are limited when the metal is outside the scan field-of-view (FOV) or when the metal is moving during the scan. In the former, even reconstructing with a larger FOV does not guarantee a good estimate of metal location in the projections; and in the latter, the metal location in each projection is difficult to identify due to motion. Single-pass methods that detect metal in single-energy projections have also been developed, but often have imperfect metal detection that leads to residual artifacts. In this work, we develop a MAR method using a dual-layer (DL) flat panel detector, which improves performance for single-pass reconstruction. METHODS: In this work, we directly detect metal objects in projections using dual-energy (DE) imaging that generates material-specific images (e.g., soft tissue and bone), where the metal stands out in bone images when nonuniform soft tissue background is removed. Metal is detected via simple thresholding, and entropy filtration is further applied to remove false-positive detections. A DL detector provides DE images with superior temporal and spatial registration and was used to perform the task. Scatter correction was first performed on DE raw projections to improve the accuracy of material decomposition. One phantom mimicking a liver biopsy setup and a cadaver head were used to evaluate the metal reduction performance of the proposed method and compared with that of a standard two-pass reconstruction, a previously published sinogram-based method using a Markov random field (MRF) model, and a single-pass projection-domain method using single-energy imaging. The phantom has a liver steering setup placed in a hollow chest phantom, with embedded metal and a biopsy needle crossing the phantom boundary. The cadaver head has dental fillings and a metal tag attached to its surface. The identified metal regions in each projection were corrected by interpolation using surrounding pixels, and the images were reconstructed using filtered backprojection. RESULTS: Our current approach removes metal from the projections, which is robust to FOV truncation during imaging acquisition. In case of FOV truncation, the method outperformed the two-pass reconstruction method. The proposed method using DE renders better accuracy in metal segmentation than the MRF method and single-energy method, which were prone to false-positive errors that cause additional streaks. For the liver steering phantom, the average spatial nonuniformity was reduced from 0.127 in uncorrected images to 0.086 using a standard two-pass reconstruction and to 0.077 using the proposed method. For the cadaver head, the average standard deviation within selected soft tissue regions ( σ s ) was reduced from 209.1 HU in uncorrected images to 69.1 HU using a standard two-pass reconstruction and to 46.8 HU using our proposed method. The proposed method reduced the processing time by 31% as compared with the two-pass method. CONCLUSIONS: We proposed a MAR method that directly detects metal in the projection domain using DE imaging, which is robust to truncation and superior to that of single-energy imaging. The method requires only a single-pass reconstruction that substantially reduces processing time compared with the standard two-pass metal reduction method.


Subject(s)
Artifacts , Image Processing, Computer-Assisted , Algorithms , Cone-Beam Computed Tomography , Phantoms, Imaging , Radiography
12.
Med Phys ; 48(10): 5837-5850, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34387362

ABSTRACT

PURPOSE: Image guidance for minimally invasive interventions is usually performed by acquiring fluoroscopic images using a monoplanar or a biplanar C-arm system. However, the projective data provide only limited information about the spatial structure and position of interventional tools and devices such as stents, guide wires, or coils. In this work, we propose a deep learning-based pipeline for real-time tomographic (four-dimensional [4D]) interventional guidance at conventional dose levels. METHODS: Our pipeline is comprised of two steps. In the first one, interventional tools are extracted from four cone-beam CT projections using a deep convolutional neural network. These projections are then Feldkamp reconstructed and fed into a second network, which is trained to segment the interventional tools and devices in this highly undersampled reconstruction. Both networks are trained using simulated CT data and evaluated on both simulated data and C-arm cone-beam CT measurements of stents, coils, and guide wires. RESULTS: The pipeline is capable of reconstructing interventional tools from only four X-ray projections without the need for a patient prior. At an isotropic voxel size of 100 µ m , our methods achieve a precision/recall within a 100 µ m environment of the ground truth of 93%/98%, 90%/71%, and 93%/76% for guide wires, stents, and coils, respectively. CONCLUSIONS: A deep learning-based approach for 4D interventional guidance is able to overcome the drawbacks of today's interventional guidance by providing full spatiotemporal (4D) information about the interventional tools at dose levels comparable to conventional fluoroscopy.


Subject(s)
Deep Learning , Cone-Beam Computed Tomography , Fluoroscopy , Humans , Image Processing, Computer-Assisted , Phantoms, Imaging , Tomography, X-Ray Computed , X-Rays
13.
Phys Med Biol ; 66(7)2021 03 23.
Article in English | MEDLINE | ID: mdl-33657536

ABSTRACT

X-ray scatter remains a major physics challenge in volumetric computed tomography (CT), whose physical and statistical behaviors have been commonly leveraged in order to eliminate its impact on CT image quality. In this work, we conduct an in-depth derivation of how the scatter distribution and scatter to primary ratio (SPR) will change during the spectral correction, leading to an interesting finding on the property of scatter. Such a characterization of scatter's behavior provides an analytic approach of compensating for the SPR as well as approximating the change of scatter distribution after spectral correction, even though both of them might be significantly distorted as the linearization mapping function in spectral correction could vary a lot from one detector pixel to another. We conduct an evaluation of SPR compensations (SPRCs) on a Catphan phantom and an anthropomorphic chest phantom to validate the characteristics of scatter. In addition, this scatter property is also directly adopted into CT imaging using a spectral modulator with flying focal spot technology (SMFFS) as an example to demonstrate its potential in practical applications. For cone-beam CT (CBCT) scans at both 80 and 120 kVp, CT images with accurate CT numbers can be achieved after spectral correction followed by the appropriate SPRC based on our presented scatter property. In the case of the SMFFS based CBCT scan of the Catphan phantom at 120 kVp, after a scatter correction using an analytic algorithm derived from the scatter property, CT image quality was significantly improved, with the averaged root mean square error reduced from 297.9 to 6.5 Hounsfield units.


Subject(s)
Artifacts , Image Processing, Computer-Assisted , Algorithms , Cone-Beam Computed Tomography/methods , Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Scattering, Radiation , Tomography, X-Ray Computed , X-Rays
14.
Med Phys ; 48(4): 1557-1570, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33420741

ABSTRACT

PURPOSE: Modulation of the x-ray source in computed tomography (CT) by a designated filter to achieve a desired distribution of photon flux has been greatly advanced in recent years. In this work, we present a densely sampled spectral modulation (DSSM) as a promising low-cost solution to quantitative CT imaging in the presence of scatter. By leveraging a special stationary filter (namely a spectral modulator) and a flying focal spot, DSSM features a strong correlation in the scatter distributions across focal spot positions and sees no substantial projection sparsity or misalignment in data sampling, making it possible to simultaneously correct for scatter and spectral effects in a unified framework. METHODS: The concept of DSSM is first introduced, followed by an analysis of the design and benefits of using the stationary spectral modulator with a flying focal spot (SMFFS) that dramatically changes the data sampling and its associated data processing. With an assumption that the scatter distributions across focal spot positions have strong correlation, a scatter estimation and spectral correction algorithm from DSSM is then developed, where a dual-energy modulator along with two flying focal spot positions is of interest. Finally, a phantom study on a tabletop cone-beam CT system is conducted to understand the feasibility of DSSM by SMFFS, using a copper modulator and by moving the x-ray tube position in the X direction to mimic the flying focal spot. RESULTS: Based on our analytical analysis of the DSSM by SMFFS, the misalignment of low- and high-energy projection rays can be reduced by a factor of more than 10 when compared with a stationary modulator only. With respect to modulator design, metal materials such as copper, molybdenum, silver, and tin could be good candidates in terms of energy separation at a given attenuation of photon flux. Physical experiments using a Catphan phantom as well as an anthropomorphic chest phantom demonstrate the effectiveness of DSSM by SMFFS with much better CT number accuracy and less image artifacts. The root mean squared error was reduced from 297.9 to 6.5 Hounsfield units (HU) for the Catphan phantom and from 409.3 to 39.2 HU for the chest phantom. CONCLUSIONS: The concept of DSSM using a SMFFS is proposed. Phantom results on its scatter estimation and spectral correction performance validate our main ideas and key assumptions, demonstrating its potential and feasibility for quantitative CT imaging.


Subject(s)
Cone-Beam Computed Tomography , Image Processing, Computer-Assisted , Algorithms , Artifacts , Feasibility Studies , Phantoms, Imaging , Scattering, Radiation , Tomography, X-Ray Computed , X-Rays
15.
IEEE Trans Radiat Plasma Med Sci ; 5(4): 453-464, 2021 Jul.
Article in English | MEDLINE | ID: mdl-35419500

ABSTRACT

Photon counting x-ray detectors (PCDs) with spectral capabilities have the potential to revolutionize computed tomography (CT) for medical imaging. The ideal PCD provides accurate energy information for each incident x-ray, and at high spatial resolution. This information enables material-specific imaging, enhanced radiation dose efficiency, and improved spatial resolution in CT images. In practice, PCDs are affected by non-idealities, including limited energy resolution, pulse pileup, and cross talk due to charge sharing, K-fluorescence, and Compton scattering. In order to maximize their performance, PCDs must be carefully designed to reduce these effects and then later account for them during correction and post-acquisition steps. This review article examines algorithms for using PCDs in spectral CT applications, including how non-idealities impact image quality. Performance assessment metrics that account for spatial resolution and noise such as the detective quantum efficiency (DQE) can be used to compare different PCD designs, as well as compare PCDs with conventional energy integrating detectors (EIDs). These methods play an important role in enhancing spectral CT images and assessing the overall performance of PCDs.

16.
Med Phys ; 47(8): 3332-3343, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32347561

ABSTRACT

PURPOSE: Dual-energy (DE) x-ray imaging has many clinical applications in radiography, fluoroscopy, and CT. This work characterizes a prototype dual-layer (DL) flat-panel detector (FPD) and investigates its DE imaging capabilities for applications in two-dimensional (2D) radiography/fluoroscopy and quantitative three-dimensional (3D) cone-beam CT. Unlike other DE methods like kV switching, a DL FPD obtains DE images from a single exposure, making it robust against patient and system motion. METHODS: The DL FPD consists of a top layer with a 200 µm-thick CsI scintillator coupled to an amorphous silicon (aSi) FPD of 150 µm pixel size and a bottom layer with a 550 µm thick CsI scintillator coupled to an identical aSi FPD. The two layers are separated by a 1-mm Cu filter to increase spectral separation. Images (43 × 43 cm2 active area) can be readout in 2 × 2 binning mode (300 µm pixels) at up to 15 frames per second. Detector performance was first characterized by measuring the MTF, NPS, and DQE for the top and bottom layers. For 2D applications, a qualitative study was conducted using an anthropomorphic thorax phantom containing a porcine heart with barium-filled coronary arteries (similar to iodine). Additionally, fluoroscopic lung tumor tracking was investigated by superimposing a moving tumor phantom on the thorax phantom. Tracking accuracies of single-energy (SE) and DE fluoroscopy were compared against the ground truth motion of the tumor. For 3D quantitative imaging, a phantom containing water, iodine, and calcium inserts was used to evaluate overall DE material decomposition capabilities. Virtual monoenergetic (VM) images ranging from 40 to 100 keV were generated, and the optimal VM image energy which achieved the highest image uniformity and maximum contrast-to-noise ratio (CNR) was determined. RESULTS: The spatial resolution of the top layer was substantially higher than that of the bottom layer (top layer 50% MTF = 2.2 mm-1 , bottom layer = 1.2 mm-1 ). A substantial increase in NNPS and reduction in DQE were observed for the bottom layer mainly due to photon loss within the top layer and Cu filter. For 2D radiographic and fluoroscopic applications, the DL FPD was capable of generating high-quality material-specific images separating soft tissue from bone and barium. For lung tumor tracking, DE fluoroscopy yielded more accurate results than SE fluoroscopy, with an average reduction in the root mean square error (RMSE) of over 10×. For the DE-CBCT studies, accurate basis material decompositions were obtained. The estimated material densities were 294.68  ±  17.41 and 92.14  ±  15.61 mg/ml for the 300 and 100 mg/ml calcium inserts, respectively, and 8.93  ±  1.45, 4.72  ±  1.44, and 2.11  ±  1.32 mg/ml for the 10, 5, and 2 mg/ml iodine inserts, respectively, with an average error of less than 5%. The optimal VM image energy was found to be 60 keV. CONCLUSIONS: We characterized a prototype DL FPD and demonstrated its ability to perform accurate single-exposure DE radiography/fluoroscopy and DE-CBCT. The merits of the DL detector approach include superior spatial and temporal registration between its constituent images, and less complicated acquisition sequences.


Subject(s)
Cone-Beam Computed Tomography , Imaging, Three-Dimensional , Animals , Fluoroscopy , Humans , Phantoms, Imaging , Radiography , Swine
17.
Article in English | MEDLINE | ID: mdl-34248248

ABSTRACT

Metal artifact remains a challenge in cone-beam CT images. Many two-pass metal artifact reduction methods have been proposed, which work fairly well, but are limited when the metal is outside the scan field-of-view (FOV) or when the metal is moving during the scan. In the former, even reconstructing with a larger FOV does not guarantee a good estimate of metal location in the projections; and in the latter, the metal location in each projection is difficult to identify due to motion. Furthermore, two-pass methods increase the total reconstruction time. In this study, a projection-based metal detection and correction method with a dual layer detector is investigated. The dual layer detector provides dual energy images with perfect temporal and spatial registration in each projection, which aid in the identification of metal. A simple phantom with metal wires (copper) and a needle (steel) is used to evaluate the projection-based metal artifact reduction method from a dual layer scan and compared with that of a single layer scan. Preliminary results showed enhanced ability to identify metal regions, leading to substantially reduced metal artifact in reconstructed images. In summary, an effective single-pass, projection-domain method using a dual layer detector has been demonstrated, and it is expected to be robust against truncation and motion.

18.
Article in English | MEDLINE | ID: mdl-34248249

ABSTRACT

Cone-beam CT (CBCT) is widely used in diagnostic imaging and image-guided procedures, leading to an increasing need for advanced CBCT techniques, such as dual energy (DE) imaging. Previous studies have shown that DE-CBCT can perform quantitative material decomposition, including quantification of contrast agents, electron density, and virtual monoenergetic images. Currently, most CBCT systems perform DE imaging using a kVp switching technique. However, the disadvantages of this method are spatial and temporal misregistration as well as total scan time increase, leading to errors in the material decomposition. DE-CBCT with a dual layer flat panel detector potentially overcomes these limitations by acquiring the dual energy images simultaneously. In this work, we investigate the DE imaging performance of a prototype dual layer detector by evaluating its material decomposition capability and comparing its performance to that of the kVp switching method. Two sets of x-ray spectra were used for kVp switching: 80/120 kVp and 80/120 kVp + 1 mm Cu filtration. Our results show the dual layer detector outperforms kVp switching at 80/120 kVp with matched dose. The performance of kVp switching was better by adding 1 mm copper filtration to the high energy images (80/120 kVp + 1 mm Cu), though the dual layer detector still provided comparable performance for material decomposition tasks. Overall, both the dual layer detector and kVp switching methods provided quantitative material decomposition images in DE-CBCT, with the dual layer detector having additional potential advantages.

19.
Article in English | MEDLINE | ID: mdl-34295015

ABSTRACT

The size and shape of an x-ray source's focal spot is a critical factor in the imaging system's overall spatial resolution. The conventional approach to imaging the focal spot uses a pinhole camera, but this requires careful, manual measurements. Instead, we propose a novel alternative, simply using the collimator available on many x-ray systems. After placing the edge of a collimator blade in the center of the beam, we can obtain an image of its edge spread function (ESF). Each ESF provides information about the focal spot distribution - specifically, the parallel projection of the focal spot in the direction parallel to the edge. If the edge is then rotated about the beam axis, each image provides a different parallel projection of the focal spot until a complete Radon transform of the focal spot distribution is obtained. The focal spot can then be reconstructed by the inverse Radon transform, or parallel-beam filtered backprojection. We conducted a study on a clinical C-arm system with 3 focal spot sizes (0.3, 0.6, 1.0 mm nominal size), comparing the focal spot obtained using the rotating edge method against the conventional pinhole approach. Our results demonstrate accurate characterization of the size and shape of the focal spot.

20.
J Med Imaging (Bellingham) ; 3(4): 043502, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27921070

ABSTRACT

The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was [Formula: see text], with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors.

SELECTION OF CITATIONS
SEARCH DETAIL
...