Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pestic Biochem Physiol ; 196: 105606, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37945228

ABSTRACT

Metalaxyl (MTL), a germicidal agent, is widely used in agriculture. Due to the biological amplification effect, MTL entering the ecological environment would result in a threat to human health through the food chain. MTL is reportedly accumulated in liver. The objectives of the study included investigating the metabolic activation of MTL in liver and defining the mechanisms participating in the hepatotoxicity of MTL. The corresponding glutathione (GSH), N-acetylcysteine (NAC) conjugate, and cysteine conjugates were observed in liver microsomes, prepared from liver tissues of mice, containing MTL and GSH, NAC or cysteine. These conjugates were also detected in urine and bile of rats receiving MTL. Apparently, MTL was biotransformed to a quinone imine intermediate dose-dependently attacking the thiols and cysteine residues of protein. The bioactivation of MTL required cytochrome P450 enzymes, and CYP3A dominated the bio-activation of MTL.


Subject(s)
Pesticides , Rats , Humans , Mice , Animals , Activation, Metabolic , Pesticides/toxicity , Pesticides/metabolism , Cysteine/metabolism , Cysteine/pharmacology , Microsomes, Liver/metabolism , Glutathione/metabolism
2.
Chem Res Toxicol ; 36(3): 479-491, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36795936

ABSTRACT

Tolterodine (TOL) is an antimuscarinic drug used for the treatment of patients with overactive bladder presenting urinary frequency, urgency, and urge incontinence. During the clinical use of TOL, adverse events such as liver injury took place. The present study aimed at the investigation of the metabolic activation of TOL possibly associated with its hepatotoxicity. One GSH conjugate, two NAC conjugates, and two cysteine conjugates were found in both mouse and human liver microsomal incubations supplemented with TOL, GSH/NAC/cysteine, and NADPH. The detected conjugates suggest the production of a quinone methide intermediate. The same GSH conjugate was also observed in mouse primary hepatocytes and in the bile of rats receiving TOL. One of the urinary NAC conjugates was observed in rats administered TOL. One of the cysteine conjugates was found in a digestion mixture containing hepatic proteins from animals administered TOL. The observed protein modification was dose-dependent. CYP3A primarily catalyzes the metabolic activation of TOL. Ketoconazole (KTC) pretreatment reduced the generation of the GSH conjugate in mouse liver and cultured primary hepatocytes after TOL treatment. In addition, KTC reduced the susceptibility of primary hepatocytes to TOL cytotoxicity. The quinone methide metabolite may be involved in TOL-induced hepatotoxicity and cytotoxicity.


Subject(s)
Chemical and Drug Induced Liver Injury , Cytochrome P-450 CYP3A , Humans , Rats , Mice , Animals , Activation, Metabolic , Cytochrome P-450 CYP3A/metabolism , Tolterodine Tartrate/metabolism , Cysteine/metabolism , Ketoconazole/metabolism , Microsomes, Liver/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Glutathione/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...