Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Res Ther ; 14(1): 195, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37542297

ABSTRACT

BACKGROUND: High dosage of dexamethasone (Dex) is an effective treatment for multiple diseases; however, it is often associated with severe side effects including muscle atrophy, resulting in higher risk of falls and poorer life quality of patients. Cell therapy with mesenchymal stem cells (MSCs) holds promise for regenerative medicine. In this study, we aimed to investigate the therapeutic efficacy of systemic administration of adipose-derived mesenchymal stem cells (ADSCs) in mitigating the loss of muscle mass and strength in mouse model of DEX-induced muscle atrophy. METHODS: 3-month-old female C57BL/6 mice were treated with Dex (20 mg/kg body weight, i.p.) for 10 days to induce muscle atrophy, then subjected to intravenous injection of a single dose of ADSCs ([Formula: see text] cells/kg body weight) or vehicle control. The mice were killed 7 days after ADSCs treatment. Body compositions were measured by animal DXA, gastrocnemius muscle was isolated for ex vivo muscle functional test, histological assessment and Western blot, while tibialis anterior muscles were isolated for RNA-sequencing and qPCR. For in vitro study, C2C12 myoblast cells were cultured under myogenic differentiation medium for 5 days following 100 [Formula: see text]M Dex treatment with or without ADSC-conditioned medium for another 4 days. Samples were collected for qPCR analysis and Western blot analysis. Myotube morphology was measured by myosin heavy chain immunofluorescence staining. RESULTS: ADSC treatment significantly increased body lean mass (10-20%), muscle wet weight (15-30%) and cross-sectional area (CSA) (~ 33%) in DEX-induced muscle atrophy mice model and down-regulated muscle atrophy-associated genes expression (45-65%). Hindlimb grip strength (~ 37%) and forelimb ex vivo muscle contraction property were significantly improved (~ 57%) in the treatment group. Significant increase in type I fibres (~ 77%) was found after ADSC injection. RNA-sequencing results suggested that ERK1/2 signalling pathway might be playing important role underlying the beneficial effect of ADSC treatment, which was confirmed by ERK1/2 inhibitor both in vitro and in vivo. CONCLUSIONS: ADSCs restore the pathogenesis of Dex-induced muscle atrophy with an increased number of type I fibres, stronger muscle strength, faster recovery rate and more anti-fatigue ability via ERK1/2 signalling pathway. The inhibition of muscle atrophy-associated genes by ADSCs offered this treatment as an intervention option for muscle-associated diseases. Taken together, our findings suggested that adipose-derived mesenchymal stem cell therapy could be a new treatment option for patient with Dex-induced muscle atrophy.


Subject(s)
MAP Kinase Signaling System , Mesenchymal Stem Cells , Mice , Female , Animals , Mice, Inbred C57BL , Muscular Atrophy/therapy , Muscular Atrophy/drug therapy , Muscle, Skeletal/metabolism , Mesenchymal Stem Cells/metabolism , Dexamethasone/adverse effects , Body Weight , RNA/metabolism
2.
J Adv Res ; 39: 73-88, 2022 07.
Article in English | MEDLINE | ID: mdl-35777918

ABSTRACT

INTRODUCTION: The regenerative capacity of mesenchymal stromal cells or medicinal signaling cells (MSCs) is largely mediated by their secreted small extracellular vesicles (sEVs), and the therapeutic efficacy of sEVs can be enhanced by licensing approaches (e.g., cytokines, hypoxia, chemicals, and genetic modification). Noncoding RNAs within MSC-derived sEVs (MSC-sEVs) have been demonstrated to be responsible for tissue regeneration. However, unlike miRNA fingerprints, which have been explored, the landscape of long noncoding RNAs (lncRNAs) in MSC-sEVs remains to be described. OBJECTIVES: To characterize lncRNA signatures in sEVs of human adipose-derived MSCs with or without inflammatory cytokine licensing and depict MSC-sEV-specific and MSC-enriched lncRNA repertoires. METHODS: sEVs were isolated from MSCs with or without TNF-α and IFN-γ (20 ng/mL) stimulation. High-throughput lncRNA sequencing and an in silico approach were employed to analyze the profile of lncRNAs in sEVs and predict lncRNA-protein interactomes. RESULTS: sEVs derived from human MSCs and fibroblasts carried a unique landscape of lncRNAs distinct from the lncRNAs inside these cells. Compared with fibroblast-derived sEVs (F-sEVs), 194 MSC-sEV-specific and 8 upregulated lncRNAs in MSC-sEVs were considered "medicinal signaling lncRNAs"; inflammatory cytokines upregulated 27 lncRNAs in MSC-sEVs, which were considered "licensing-responsive lncRNAs". Based on lncRNA-protein interactome prediction and enrichment analysis, we found that the proteins interacting with medicinal signaling lncRNAs or licensing-responsive lncRNAs have a tight interaction network involved in chromatin remodeling, SWI/SNF superfamily type complexes, and histone binding. CONCLUSION: In summary, our study depicts the landscape of lncRNAs in MSC-sEVs and predicts their potential functions via the lncRNA-protein interactome. Elucidation of the lncRNA landscape of MSC-sEVs will facilitate defining the therapeutic potency of MSC-sEVs and the development of sEV-based therapeutics.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , RNA, Long Noncoding , Cytokines , Extracellular Vesicles/genetics , Humans , RNA, Long Noncoding/genetics , Secretory Vesicles
3.
Free Radic Biol Med ; 168: 234-246, 2021 05 20.
Article in English | MEDLINE | ID: mdl-33781894

ABSTRACT

Osteoporosis is characterized by reductions in bone mass, which could be attributed to the dysregulation of bone homeostasis, such as the loss of balance between bone-resorbing osteoclasts and bone-forming osteoblasts. Elevated levels of oxidative stress increase bone resorption by promoting osteoclastogenesis and inhibiting the osteogenesis. Ginkgolide B (GB), a small natural molecule from Ginkgo biloba, has been reported to possess pharmacological activities by regulating reactive oxygen species (ROS) in aging-related degenerative diseases. Herein, we assessed the therapeutic effects of GB on the bone phenotypes of mice with osteoporosis induced by (I) aging, (II) ovariectomy, and (III) glucocorticoids. In all three animal models, oral gavage of GB significantly improved bone mass consistent with the increase in the OPG-to-RANKL ratio. In the in vitro experiments, GB promoted osteogenesis in aged mesenchymal stem cells (MSCs) and repressed osteoclastogenesis in aged macrophages by reducing ROS. The serum protein profile in GB-treated aged mice revealed moderate rejuvenating effects; signaling pathways associated with ROS were also regulated. The anabolic and anti-catabolic effects of GB were illustrated by the reduction in ROS. Our results indicate that GB is effective in treating osteoporosis. The use of GB in patients with osteoporosis is worthy of further clinical investigation.


Subject(s)
Bone Resorption , Osteoporosis , Animals , Cell Differentiation , Female , Ginkgolides , Homeostasis , Humans , Lactones , Mice , Osteoclasts/metabolism , Osteogenesis , Osteoporosis/drug therapy , Oxidative Stress , RANK Ligand
SELECTION OF CITATIONS
SEARCH DETAIL
...