Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 5312, 2022 09 09.
Article in English | MEDLINE | ID: mdl-36085288

ABSTRACT

Response to immunotherapies can be variable and unpredictable. Pathology-based phenotyping of tumors into 'hot' and 'cold' is static, relying solely on T-cell infiltration in single-time single-site biopsies, resulting in suboptimal treatment response prediction. Dynamic vascular events (tumor angiogenesis, leukocyte trafficking) within tumor immune microenvironment (TiME) also influence anti-tumor immunity and treatment response. Here, we report dynamic cellular-level TiME phenotyping in vivo that combines inflammation profiles with vascular features through non-invasive reflectance confocal microscopic imaging. In skin cancer patients, we demonstrate three main TiME phenotypes that correlate with gene and protein expression, and response to toll-like receptor agonist immune-therapy. Notably, phenotypes with high inflammation associate with immunostimulatory signatures and those with high vasculature with angiogenic and endothelial anergy signatures. Moreover, phenotypes with high inflammation and low vasculature demonstrate the best treatment response. This non-invasive in vivo phenotyping approach integrating dynamic vasculature with inflammation serves as a reliable predictor of response to topical immune-therapy in patients.


Subject(s)
Immunotherapy , Tumor Microenvironment , Humans , Immunologic Factors , Inflammation , Phenotype
2.
Eur J Med Chem ; 85: 468-79, 2014 Oct 06.
Article in English | MEDLINE | ID: mdl-25113875

ABSTRACT

A series of 2-methyl-1H-indol-3-ethylsulfamoylphenylacrylamides based on LBH589-PXD101 core have been synthesized and evaluated for their histone deacetylase (HDAC) inhibitory and anti-inflammatory activity. In vitro, compounds 9-12 show 2.6-fold better HDAC inhibition and 3-fold better IL-6 suppression compared to LBH589·HCl (1·HCl). Furthermore, these compounds did not show apparent cell viability suppression on macrophages while in contrast, treatment with 1·HCl resulted in significant reduction in cell viability as demonstrated by an MTT assay. Repressed expression of iNOS, COX-2 and reduced phosphorylation of p65 revealed the inhibitory effect of these analogues on inflammatory mediator release which is related to inhibited NF-ĸB signals. (N-Hydroxy-3-{3-[2-(2-methyl-1H-indol-3-yl)-ethylsulfamoyl]-phenyl}-acrylamide) (9), exhibited ability superior to that of 1·HCl, was able to reduce carrageenan-induced acute inflammation in an animal model. Compounds 9-12 have potential anti-inflammatory activity and compound 9 can serve as lead compound for further development.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Indoles/chemistry , Indoles/pharmacology , Animals , Anti-Inflammatory Agents/therapeutic use , Cell Survival/drug effects , Edema/drug therapy , HeLa Cells , Histone Deacetylase Inhibitors/therapeutic use , Humans , Indoles/therapeutic use , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...