Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Biosci (Landmark Ed) ; 29(2): 71, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38420831

ABSTRACT

The abnormal intermediate glucose metabolic pathways induced by elevated intracellular glucose levels during hyperglycemia often establish the metabolic abnormality that leads to cellular and structural changes in development and to progression of diabetic pathologies. Glucose toxicity generally refers to the hyperglycemia-induced irreversible cellular dysfunctions over time. These irreversible cellular dysfunctions in diabetic nephropathy include: (1) inflammatory responses, (2) mesangial expansion, and (3) podocyte dysfunction. Using these three cellular events in diabetic nephropathy as examples of glucose toxicity in the diabetic complications, this review focuses on: (1) the molecular and cellular mechanisms associated with the hexosamine biosynthetic pathway that underly glucose toxicity; and (2) the potential therapeutic tools to inhibit hyperglycemia induced pathologies. We propose novel therapeutic strategies that directly shunts intracellular glucose buildup under hyperglycemia by taking advantage of intracellular glucose metabolic pathways to dampen it by normal synthesis and secretion of hyaluronan, and/or by intracellular chondroitin sulfate synthesis and secretion. This could be a useful way to detoxify the glucose toxicity in hyperglycemic dividing cells, which could mitigate the hyperglycemia induced pathologies in diabetes.


Subject(s)
Diabetic Nephropathies , Hyperglycemia , Humans , Glucose/metabolism , Diabetic Nephropathies/complications , Biosynthetic Pathways , Hexosamines , Hyperglycemia/complications , Hyperglycemia/metabolism
2.
J Cell Immunol ; 5(3): 82-86, 2023.
Article in English | MEDLINE | ID: mdl-37885773

ABSTRACT

Heparin is a highly sulfated, hence highly polyanionic, glycosaminoglycan with a repeating disaccharide that contains a hexuronic acid, and it has been used as an anticoagulant clinically for more than half a century. Daily IP injections of small amounts of heparin in the STZ diabetic rat prevented these pathological responses even though the animals sustained hyperglycemic levels of glucose throughout. However, the structural determinant that mediates this activity is not clear. This paper describes our finding that the responses of hyperglycemic dividing mesangial cells to heparin are mediated by its non-reducing terminal trisaccharide and proposes that the non-reducing end tri-saccharide of heparin acts as a scavenger tool to detoxify the glucose toxicity in diabetes.

3.
J Biol Chem ; 299(8): 104995, 2023 08.
Article in English | MEDLINE | ID: mdl-37394007

ABSTRACT

Infiltrated pre-inflammatory monocytes and macrophages have important roles in the induction of diabetic lung injuries, but the mechanism mediating their infiltration is still unclear. Here, we showed that airway smooth muscle cells (SMCs) activated monocyte adhesion in response to hyperglycemic glucose (25.6 mM) by significantly increasing hyaluronan (HA) in the cell matrix, with concurrent 2- to 4-fold increases in adhesion of U937 monocytic-leukemic cells. The HA-based structures were attributed directly to the high-glucose and not to increased extracellular osmolality, and they required growth stimulation of SMCs by serum. Treatment of SMCs with heparin in high-glucose induces synthesis of a much larger HA matrix, consistent with our observations in the glomerular SMCs. Further, we observed increases in tumor necrosis factor-stimulated gene-6 (TSG-6) expression in high-glucose and high-glucose plus heparin cultures, and the heavy chain (HC)-modified HA structures existed on the monocyte-adhesive cable structures in high-glucose and in high-glucose plus heparin-treated SMC cultures. Interestingly, these HC-modified HA structures were unevenly distributed along the HA cables. Further, the in vitro assay with recombinant human TSG-6 and the HA14 oligo showed that heparin has no inhibitory activity on the TSG-6-induced HC-transfer to HA, consistent with the results from SMC cultures. These results support the hypothesis that hyperglycemia in airway smooth muscle induces the synthesis of a HA matrix that recruits inflammatory cells and establishes a chronic inflammatory process and fibrosis that lead to diabetic lung injuries.


Subject(s)
Diabetes Mellitus , Hyperglycemia , Lung Injury , Humans , Diabetes Mellitus/metabolism , Extracellular Matrix/metabolism , Glucose/pharmacology , Glucose/metabolism , Heparin/pharmacology , Heparin/metabolism , Hyaluronic Acid/metabolism , Hyperglycemia/metabolism , Lung Injury/metabolism , Monocytes/metabolism , Animals , Mice , Mice, Inbred BALB C
4.
J Biol Chem ; 299(4): 103074, 2023 04.
Article in English | MEDLINE | ID: mdl-36858200

ABSTRACT

Heparin can block pathological responses associated with diabetic nephropathy in animal models and human patients. Our previous studies showed that the interaction of heparin on the surface of rat mesangial cells (RMCs) entering G1 of cell division in hyperglycemic glucose: 1) blocked glucose uptake by glucose transporter 4; 2) inhibited cytosolic uridine diphosphate-glucose elevation that would occur within 6 h from G0/G1; and 3) prevented subsequent activation of hyaluronan synthesis in intracellular compartments and subsequent inflammatory responses. However, specific proteins that interact with heparin are unresolved. Here, we showed by live cell imaging that fluorescent heparin was rapidly internalized into the cytoplasm and then into the endoplasmic reticulum, Golgi, and nuclei compartments. Biotinylated-heparin was applied onto the surface of growth arrested G0/G1 RMCs in order to extract heparin-binding protein(s). SDS-PAGE gels showed two bands at ∼70 kDa in the extract that were absent when unlabeled heparin was used to compete. Trypsin digests of the bands were analyzed by MS and identified as calreticulin and prelamin A/C. Immunostaining with their antibodies identified the presence of calreticulin on the G0/G1 RMC cell surface. Previous studies have shown that calreticulin can be on the cell surface and can interact with the LDL receptor-related protein, which has been implicated in glucose transport by interaction with glucose transporter 4. Thus, cell surface calreticulin can act as a heparin receptor through a mechanism involving LRP1, which prevents the intracellular responses in high glucose and reprograms the cells to synthesize an extracellular hyaluronan matrix after division.


Subject(s)
Calreticulin , Cell Division , G1 Phase , Glucose , Heparin , Hyperglycemia , Mesangial Cells , Resting Phase, Cell Cycle , Animals , Humans , Rats , Calreticulin/metabolism , Cells, Cultured , Glomerular Mesangium/metabolism , Glucose/metabolism , Glucose Transport Proteins, Facilitative/metabolism , Heparin/pharmacology , Heparin/metabolism , Hyaluronic Acid/metabolism , Mesangial Cells/cytology , Mesangial Cells/metabolism , Hyperglycemia/metabolism
5.
J Allergy Infect Dis ; 4(1): 16-23, 2023.
Article in English | MEDLINE | ID: mdl-38618493

ABSTRACT

Many diabetic complications, such as renal and cardiovascular disease, share a common association with extensive and chronic inflammation due to infiltration by activated leukocytes that originate from the bone marrow (BM). Our previous study demonstrated that macrophage progenitor cells that divided in hyperglycemia induced intracellular synthesis of hyaluronan and became pro-inflammatory macrophages (Mpi), and that the presence of low concentrations of heparin (~50 nM) prevented the intracellular HA synthesis and promoted the formation of tissue repair macrophages (Mtr). However, the molecular mechanism underlying heparin's role is still unknown. This study showed that heparin can be internalized by dividing monocyte progenitor cells. Further, there are two most abundant heparin binding proteins, alpha-enolase (ENO-1) and cofilin-1, identified on monocyte cell surfaces. In addition to their conventional roles inside of cells, ENO-1 and cofilin-1 can be found on cell surfaces and are also involved in autoimmune diseases. Thus, this study provides new insight into heparin's role in regulating monocyte and macrophage function.

6.
J Biol Chem ; 294(16): 6591-6597, 2019 04 19.
Article in English | MEDLINE | ID: mdl-30723159

ABSTRACT

Mesangial expansion underlies diabetic nephropathy, leading to sclerosis and renal failure. The glycosaminoglycan heparin inhibits mesangial cell growth, but the molecular mechanism is unclear. Here, rat mesangial cells (RMCs) were growth-arrested in the G0/G1 phase of cell division, stimulated to divide in normal glucose (5.6 mm) or high glucose (25.6 mm) with or without heparin, and analyzed for glucose uptake. We observed that RMCs entering the G1 phase in normal glucose with or without heparin rapidly cease glucose uptake. RMCs entering G1 in high glucose sustained glucose uptake for the first 3 h, and high-glucose exposure of RMCs only in the first 8 h of G1 induced the formation of an extracellular monocyte-adhesive hyaluronan matrix after cell division was completed. Moreover, a low heparin concentration under high-glucose conditions blocked glucose uptake by 1 h into G1 Of note, glucose transporter 4 (glut4) localized on the RMC surface at G0/G1 and was internalized into G1 cells under normal glucose conditions with or without heparin within 30 min. We also noted that, under high-glucose conditions, glut4 remained on the RMC surface for at least 2 h into G1 and was internalized by 4 h without heparin and within 1 h with heparin. These results provide evidence that the influx of glucose in hyperglycemic dividing RMCs initiates intermediate glucose metabolism, leading to increased cytosolic UDP sugars, and induces abnormal intracellular hyaluronan synthesis during the S phase of cell division.


Subject(s)
Glomerular Mesangium/metabolism , Glucose Transporter Type 4/metabolism , Glucose/metabolism , Heparin/pharmacology , Hyperglycemia/metabolism , Interphase/drug effects , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Extracellular Matrix/metabolism , Glomerular Mesangium/pathology , Hyperglycemia/pathology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...