Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(15): e2307951, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38197585

ABSTRACT

The Si-based integrated circuits industry has been developing for more than half a century, by focusing on the scaling-down of transistor. However, the miniaturization of transistors will soon reach its physical limits, thereby requiring novel material and device technologies. Resistive memory is a promising candidate for in-memory computing and energy-efficient synaptic devices that can satisfy the computational demands of the future applications. However, poor cycle-to-cycle and device-to-device uniformities hinder its mass production. 2D materials, as a new type of semiconductor, is successfully employed in various micro/nanoelectronic devices and have the potential to drive future innovation in resistive memory technology. This review evaluates the potential of using the thinnest advanced materials, that is, monolayer 2D materials, for memristor or memtransistor applications, including resistive switching behavior and atomic mechanism, high-frequency device performances, and in-memory computing/neuromorphic computing applications. The scaling-down advantages of promising monolayer 2D materials including graphene, transition metal dichalcogenides, and hexagonal boron nitride are presented. Finally, the technical challenges of these atomic devices for practical applications are elaborately discussed. The study of monolayer-2D-material-based resistive memory is expected to play a positive role in the exploration of beyond-Si electronic technologies.

2.
3.
Nanotechnology ; 34(20)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36706447

ABSTRACT

The non-volatile resistive switching process of a MoS2based atomristor with a vertical structure is investigated by first-principles calculations. It is found that the monolayer MoS2with a S vacancy defect (VS) could maintain an insulation characteristic and a high resistance state (HRS) is remained. As an electrode metal atom is adsorbed on the MoS2monolayer, the semi-conductive filament is formed with the assistance ofVS. Under this condition, the atomristor presents a low resistance state (LRS). The ON state current of this semi-filament is increased close to two orders of magnitude larger than that without the filament. The energy barrier for an Au-atom to penetrate the monolayer MoS2viaVSis as high as 6.991 eV. When it comes to a double S vacancy (VS2), the energy barrier is still amounted to 3.554 eV, which manifests the bridge-like full conductive filament cannot form in monolayer MoS2based atomristor. The investigation here promotes the atomic level understanding of the resistive switching properties about the monolayer MoS2based memristor. The physics behind should also work in atomristors based on other monolayer transition-metal dichalcogenides, like WSe2and MoTe2. The investigation will be a reference for atomristor-device design or optimization.

SELECTION OF CITATIONS
SEARCH DETAIL
...