Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 217: 792-802, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-35902018

ABSTRACT

The high density and poor thermal insulation of traditional wood-plastic composites limited the application in the field of building materials. In this paper, wood fiber (WF) and PLA were used as raw materials and azodicarbonamide was used as the foaming agent. Lightweight WF/PLA composites were prepared by the hot-pressing foaming method, aiming to obtain renewable, low-density material with high strength-to-weight ratio and thermal insulation performance. The results showed that after adding 20 % WF into PLA, the cell morphology was excellent and the cell size was uniform. The magnification reached the minimum value of 0.36 g/cm3 and the foaming magnification was 3.42 times. The impact strength and compressive strength were 3.16 kJ/m3 and 4.12 MPa, its comprehensive mechanical properties were outstanding. The thermal conductivity of foamed materials was 0.110-0.148 (W/m·K), which was significantly lower than that of unfoamed materials and common wood. Its excellent mechanical properties and thermal insulation can be suitable for application in the construction field to replace traditional wood.


Subject(s)
Polyesters , Wood , Construction Materials , Temperature
2.
J Hazard Mater ; 435: 129068, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35650730

ABSTRACT

Frequent oil-spill accidents have posed serious threats to ecosystem balance and the efficiency of resources use. Hydrophobic adsorbents that can adsorb and recover oil without causing secondary pollution are ideal candidates for the remediation of oil contamination in water. However, these composites are inefficient for crude oil-spills cleanup because crude oil has low liquidity of at room temperature. Increasing the temperature can effectively enhance the flowability of crude oil. To achieve efficient crude-oil heating and removal in situ, wood aerogels were immersed in Ti3C2Tx suspensions and then coated with polydimethylsiloxane (PDMS) to obtain a solar-heated adsorbent (PT-WA). The prepared PT-WA exhibits super-hydrophobicity (water contact angle: 154° ± 2°), mechanical robustness (withstanding 20 loading-unloading cycles under 50% strain without structural damage), strong solar absorption, and favorable photothermal-conversion capability (rising to ~85 °C within 90 s under 1.5 sun). Owing to these advantages, PT-WA is an effective adsorbent for crude oil cleanup. In addition, a 'self-heating crude oil collector' was assembled for the fast adsorption and restoration of crude oil from the water surface. This solar-assisted self-heating sorbent offers a competitive platform for the cleanup and recycling of viscous crude oil spills.


Subject(s)
Petroleum , Adsorption , Ecosystem , Heating , Titanium , Water , Wood
3.
Int J Mol Sci ; 23(12)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35743188

ABSTRACT

In recent years, under the pressure of resource shortage and white pollution, the development and utilization of biodegradable wood-plastic composites (WPC) has become one of the hot spots for scholars' research. Here, corn straw fiber (CSF) was chosen to reinforce a poly(lactic acid) (PLA) matrix with a mass ratio of 3:7, and the CSF/PLA composites were obtained by melt mixing. The results showed that the mechanical properties of the corn straw fiber core (CSFC) and corn straw fiber skin (CSFS) loaded PLA composites were stronger than those of the CSFS/PLA composites when the particle size of CSF was low. The tensile strength and bending strength of CSFS/CSFC/PLA are 54.08 MPa and 87.24 MPa, respectively, and the elongation at break is 4.60%. After soaking for 8 hours, the water absorption of CSF/PLA composite reached saturation. When the particle size of CSF is above 80 mesh, the saturated water absorption of the material is kept below 7%, and CSF/PLA composite has good hydrophobicity, which is mainly related to the interfacial compatibility between PLA and CSF. By observing the microstructure of the cross section of the CSF/PLA composite, the research found that the smaller the particle size of CSF, the smoother the cross section of the composite and the more unified the dispersion of CSF in PLA. Therefore, exploring the composites formed by different components of CSF and PLA can not only expand the application range of PLA, but also enhance the application value of CSF in the field of composites.


Subject(s)
Biodegradable Plastics , Zea mays , Lactic Acid/chemistry , Polyesters , Polymers/chemistry , Water , Zea mays/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...