Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
J Mater Chem B ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954469

ABSTRACT

Foodborne pathogens including Salmonella typhimurium (S. typhimurium) are responsible for over 600 million global incidences of illness annually, posing a significant threat to public health. Inductively coupled plasma mass spectrometry (ICP-MS), coupled with element labeling strategies, has emerged as a promising platform for multivariate and accurate pathogen detection. However, achieving high specificity and sensitivity remains a critical challenge. Herein, we synthesize clustered magnetic nanoparticles (MNPs) and popcorn-shaped gold nanoparticles (AuNPs) to conjugate capture and report DNA probes for S. typhimurium, respectively. These engineered nanoparticles facilitate the identification of S. typhimurium DNA through a sandwich hybridization technique. ICP-MS quantification of Au within the sandwich-structure complexes allows for precise S. typhimurium detection. The unique morphology of the AuNPs and MNPs increases the available sites for probe attachment, enhancing the efficiency of S. typhimurium DNA capture, broadening the detection range to 101-1010 copies mL-1, and achieving a low detection limit of 1 copy mL-1, and the overall assay time is 70 min. The high specificity of this method is verified by anti-interference assays against ten other pathogens. The recovery was 96.8-102.8% for detecting S. typhimurium DNA in biological samples. As these specially designed nanoparticles may facilitate the attachment of various proteins and nucleic acid probes, they may become an effective platform for detecting multiple pathogens.

2.
MedComm (2020) ; 5(7): e625, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38919335

ABSTRACT

Overexposure to ultraviolet light (UV) has become a major dermatological problem since the intensity of ultraviolet radiation is increasing. As an adaption to outside environments, amphibians gained an excellent peptide-based defense system in their naked skin from secular evolution. Here, we first determined the adaptation and resistance of the dark-spotted frogs (Pelophylax nigromaculatus) to constant ultraviolet B (UVB) exposure. Subsequently, peptidomics of frog skin identified a series of novel peptides in response to UVB. These UV-induced frog skin peptides (UIFSPs) conferred significant protection against UVB-induced death and senescence in skin cells. Moreover, the protective effects of UIFSPs were boosted by coupling with the transcription trans-activating (TAT) protein transduction domain. In vivo, TAT-conjugated UIFSPs mitigated skin photodamage and accelerated wound healing. Transcriptomic profiling revealed that multiple pathways were modulated by TAT-conjugated UIFSPs, including small GTPase/Ras signaling and MAPK signaling. Importantly, pharmacological activation of MAPK kinases counteracted UIFSP-induced decrease in cell death after UVB exposure. Taken together, our findings provide evidence for the potential preventive and therapeutic significance of UIFSPs in UV-induced skin damage by antagonizing MAPK signaling pathways. In addition, these results suggest a practicable alternative in which potential therapeutic agents can be mined from organisms with a fascinating ability to adapt.

3.
ACS Appl Mater Interfaces ; 16(24): 30793-30809, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38833412

ABSTRACT

Both bone mesenchymal stem cells (BMSCs) and their exosomes suggest promising therapeutic tools for bone regeneration. Lithium has been reported to regulate BMSC function and engineer exosomes to improve bone regeneration in patients with glucocorticoid-induced osteonecrosis of the femoral head. However, the mechanisms by which lithium promotes osteogenesis have not been elucidated. Here, we demonstrated that lithium promotes the osteogenesis of BMSCs via lithium-induced increases in the secretion of exosomal Wnt10a to activate Wnt/ß-catenin signaling, whose secretion is correlated with enhanced MARK2 activation to increase the trafficking of the Rab11a and Rab11FIP1 complexes together with exosomal Wnt10a to the plasma membrane. Then, we compared the proosteogenic effects of exosomes derived from lithium-treated or untreated BMSCs (Li-Exo or Con-Exo) both in vitro and in vivo. We found that, compared with Con-Exo, Li-Exo had superior abilities to promote the uptake and osteogenic differentiation of BMSCs. To optimize the in vivo application of these hydrogels, we fabricated Li-Exo-functionalized gelatin methacrylate (GelMA) hydrogels, which are more effective at promoting osteogenesis and bone repair than Con-Exo. Collectively, these findings demonstrate the mechanism by which lithium promotes osteogenesis and the great promise of lithium for engineering BMSCs and their exosomes for bone regeneration, warranting further exploration in clinical practice.


Subject(s)
Exosomes , Lithium , Mesenchymal Stem Cells , Osteogenesis , beta Catenin , rab GTP-Binding Proteins , Osteogenesis/drug effects , Exosomes/metabolism , Exosomes/drug effects , Exosomes/chemistry , Animals , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , rab GTP-Binding Proteins/metabolism , beta Catenin/metabolism , Lithium/chemistry , Lithium/pharmacology , Wnt Proteins/metabolism , Mice , Cell Differentiation/drug effects , Rats , Hydrogels/chemistry , Hydrogels/pharmacology , Rats, Sprague-Dawley , Wnt Signaling Pathway/drug effects , Bone Regeneration/drug effects , Humans , Male
4.
Talanta ; 277: 126325, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38833906

ABSTRACT

Infections caused by viruses and bacteria pose a significant threat to global public health, emphasizing the critical importance of timely and precise detection methods. Inductively coupled plasma mass spectrometry (ICP-MS), a contemporary approach for pathogen detection, offers distinct advantages such as high sensitivity, a wide linear range, and multi-index capabilities. This review elucidates the underexplored application of ICP-MS in conjunction with functional nanoparticles (NPs) for the identification of viruses and bacteria. The review commences with an elucidation of the underlying principles, procedures, target pathogens, and NP requirements for this innovative approach. Subsequently, a thorough analysis of the advantages and limitations associated with these techniques is provided. Furthermore, the review delves into a comprehensive examination of the challenges encountered when utilizing NPs and ICP-MS for pathogen detection, culminating in a forward-looking assessment of the potential pathways for advancement in this domain. Thus, this review contributes novel perspectives to the field of pathogen detection in biomedicine by showcasing the promising synergy of ICP-MS and NPs.

5.
ACS Appl Mater Interfaces ; 16(22): 28402-28408, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38768300

ABSTRACT

α-Phase formamidinium lead iodide (FAPbI3) perovskite solar cells (PSCs) have garnered significant attention, owing to their remarkable efficiency. Methylammonium chloride (MACl), a common additive, is used to control the crystallization of FAPbI3, thereby facilitating the formation of the photoactive α-phase. However, MACl's high volatility raises concerns regarding its stability and potential impact on the stability of the device. In this study, we partially substituted MACl with n-propylammonium chloride (PACl), which has a long alkyl chain, to promote the oriented crystallization of FAPbI3, ultimately forming an δ-phase-free perovskite. The FAPbI3 film containing PACl demonstrates an enhanced photoluminescence intensity and lifetime. Additionally, PACl's presence at grain boundaries acts as a protective layer for the PSCs. Consequently, we achieved a power conversion efficiency (PCE) of 22.4% and exceptional stability. It maintains over 95% of initial PCE for 100 days in an N2 glovebox, over 85% after 100 h of maximum power point tracking, and over 80% after 60 °C thermal aging.

6.
mSystems ; 9(4): e0002324, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38501812

ABSTRACT

Metabolic maladaptation in dairy cows after calving can lead to long-term elevation of ketones, such as ß-hydroxybutyrate (BHB), representing the condition known as hyperketonemia, which greatly influences the health and production performance of cows during the lactation period. Although the gut microbiota is known to alter in dairy cows with hyperketonemia, the association of microbial metabolites with development of hyperketonemia remains unknown. In this study, we performed a multi-omics analysis to investigate the associations between fecal microbial community, fecal/plasma metabolites, and serum markers in hyperketonemic dairy cows during the transition period. Dynamic changes in the abundance of the phyla Verrucomicrobiota and Proteobacteria were detected in the gut microbiota of dairy cows, representing an adaptation to enhanced lipolysis and abnormal glucose metabolism after calving. Random forest and univariate analyses indicated that Frisingicoccus is a key bacterial genus in the gut of cows during the development of hyperketonemia, and its abundance was positively correlated with circulating branched-chain amino acid levels and the ketogenesis pathway. Taurodeoxycholic acid, belonging to the microbial metabolite, was strongly correlated with an increase in blood BHB level, and the levels of other secondary bile acid in the feces and plasma were altered in dairy cows prior to the diagnosis of hyperketonemia, which link the gut microbiota and hyperketonemia. Our results suggest that alterations in the gut microbiota and its metabolites contribute to excessive lipolysis and insulin insensitivity during the development of hyperketonemia, providing fundamental knowledge about manipulation of gut microbiome to improve metabolic adaptability in transition dairy cows.IMPORTANCEAccumulating evidence is pointing to an important association between gut microbiota-derived metabolites and metabolic disorders in humans and animals; however, this association in dairy cows from late gestation to early lactation is poorly understood. To address this gap, we integrated longitudinal gut microbial (feces) and metabolic (feces and plasma) profiles to characterize the phenotypic differences between healthy and hyperketonemic dairy cows from late gestation to early lactation. Our results demonstrate that cows underwent excessive lipid mobilization and insulin insensitivity before hyperketonemia was evident. The bile acids are functional readouts that link gut microbiota and host phenotypes in the development of hyperketonemia. Thus, this work provides new insight into the mechanisms involved in metabolic adaptation during the transition period to adjust to the high energy and metabolic demands after calving and during lactation, which can offer new strategies for livestock management involving intervention of the gut microbiome to facilitate metabolic adaptation.


Subject(s)
Gastrointestinal Microbiome , Insulins , Female , Humans , Pregnancy , Cattle , Animals , Lactation/metabolism , Glucose/metabolism , Lipolysis , Insulins/metabolism
7.
J Microbiol ; 61(8): 777-789, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37792248

ABSTRACT

Co-infection of respiratory tract viruses and bacteria often result in excess mortality, especially pneumonia caused by influenza viruses and Streptococcus pneumoniae. However, the synergistic mechanisms remain poorly understood. Therefore, it is necessary to develop a clearer understanding of the molecular basis of the interaction between influenza virus and Streptococcus pneumonia. Here, we developed the BALB/c mouse model and the A549 cell model to investigate inflammation and pyroptotic cell death during co-infection. Co-infection significantly activated the NLRP3 inflammasome and induced pyroptotic cell death, correlated with excess mortality. The E3 ubiquitin ligase NEDD4 interacted with both NLRP3 and GSDMD, the executor of pyroptosis. NEDD4 negatively regulated NLRP3 while positively regulating GSDMD, thereby modulating inflammation and pyroptotic cell death. Our findings suggest that NEDD4 may play a crucial role in regulating the GSDMD-mediated pyroptosis signaling pathway. Targeting NEDD4 represents a promising approach to mitigate excess mortality during influenza pandemics by suppressing synergistic inflammation during co-infection of influenza A virus and Streptococcus pneumoniae.


Subject(s)
Coinfection , Influenza A virus , Pneumonia , Animals , Mice , Inflammasomes/metabolism , Inflammation , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Streptococcus pneumoniae/metabolism
8.
J Agric Food Chem ; 71(35): 13114-13123, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37635358

ABSTRACT

Excessive residues of fluoroquinolones (FQs) in aquatic products have become a growing issue in recent years. Herein, we demonstrate an upconversion fluorescence nanosensor constructed by a one-stone-two-birds strategy, where Fe3+ not only quenches upconversion fluorescence with high efficiency but also specifically recognizes the bidentate ligand structure of FQs. Compared to existing methods, the proposed sensor is simpler to synthesize and cheap and has more storage stability due to the unification of the quencher and recognition molecule. Enrofloxacin (ENR) was chosen as a representative veterinary drug for FQs to verify the effectiveness of the nanosensor. Under optimal conditions, the range of detection for ENR was 2.0 × 10-2 to 2.0 × 102 µg/mL, with a limit of detection of 1.08 × 10-3 µg/mL. The developed nanosensor was further validated by high-performance liquid chromatography-ultraviolet (HPLC-UV) without significant differences in practical detection. Hence, this study offers a potential strategy for the detection of FQs.


Subject(s)
Fluoroquinolones , Chromatography, High Pressure Liquid
9.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(6): 1300-1305, 2023 Nov 20.
Article in Chinese | MEDLINE | ID: mdl-38162071

ABSTRACT

Helicobacter pylori (H. pylori), for a long time, has generally been considered an extracellular bacterium. However, recent findings have shown that H. pylori can gain entry into host cells, evade attacks from the host immune system and the killing ability of medication, form stable intracellular ecological niche, and achieve re-release into the extracellular environment, thus causing recurrent infections. H. pylori intracellular infection causes cellular signaling and metabolic alterations, which may be closely associated with the pathogenesis and progression of tumors, thereby presenting new challenges for clinical eradicative treatment of H. pylori. Herein, examining this issue from a clinical perspective, we reviewed reported findings on the mechanisms of how H. pylori achieved intracellular infection, including the breaching of the host cell biological barrier, immune evasion, and resistance to autophagy. In addition, we discussed our reflections and the prospects of important questions concerning H. pylori, including the clinical prevention and control strategy, intracellular derivation, and the damage to host cells.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Autophagy
10.
Anal Bioanal Chem ; 414(29-30): 8179-8189, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36197461

ABSTRACT

Staphylococcus aureus (S. aureus) is a common pathogen that is dangerous to humans' health. Herein, a novel upconversion fluorescent biosensor based on fluorescence resonance energy transfer from aptamer-labeled upconversion nanoparticles (UCNPs-apt) as donor and cobalt oxyhydroxide (CoOOH) nanosheets as acceptor was designed to detect S. aureus in complex matrices. The principle of the work relies on fluorescence resonance energy transfer as UCNPs-apt can self-assemble on CoOOH nanosheet surfaces by van der Waals forces to effectively quench the fluorescence. When S. aureus was added, the aptamer was able to preferentially capture the target, resulting in the dissociation of donor and acceptor and the recovery of fluorescence. The structure and morphology of the nanostructures were assigned in detail by a series of characterizations, and the energy transfer mechanism was evaluated by time-resolved lifetime measurements. Under the optimal conditions, a linear calibration plot was obtained in a concentration range of 45-4.5 × 106 CFU/mL with a limit of detection of 15 CFU/mL. In addition, the proposed biosensor was used for S. aureus detection in real samples (e.g., pork, beef), and the detection result showed no significant difference (p > 0.05) compared with the conventional plate count approach. Hence, the fabricated biosensor holds a potential application for S. aureus in food analysis and public health.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Staphylococcal Infections , Humans , Animals , Cattle , Staphylococcus aureus , Cobalt/chemistry , Fluorescence Resonance Energy Transfer , Aptamers, Nucleotide/chemistry , Limit of Detection
11.
Infect Immun ; 90(10): e0039322, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36190255

ABSTRACT

Helicobacter pylori (H. pylori) is an important pathogen that can cause gastric cancer. Multiple adhesion molecules mediated H. pylori adherence to cells is the initial step in the infection of host cells. H. pylori cholesterol-α-glucosyltransferase (CGT) recognizes and extracts cholesterol from cell membranes to destroy lipid raft structure, further promotes H. pylori adhesion to gastric epithelial cells. O-Glycan, a substance secreted by the deep gastric mucosa, can competitively inhibit CGT activity and may serve as an important factor to prevent H. pylori colonization in the deep gastric mucosa. However, the inhibitory and injury-protection effects of O-Glycan against H. pylori infection has not been well investigated. In this study, we found that O-Glycan significantly inhibited the relative urease content in the coinfection system. In the presence of O-glycan, the injury of GES-1 cells in H. pylori persistent infection model was attenuated and the cell viability was increased. We use fluorescein isothiocyanate-conjugated cholera toxin subunit B (FITC-CTX-B) to detect lipid rafts on gastric epithelial cells and observed that O-glycan can protect H. pylori from damaging lipid raft structures on cell membranes. In addition, transcriptome data showed that O-glycan treatment significantly reduced the activation of inflammatory cancer transformation pathway caused by H. pylori infection. Our results suggest that O-Glycan is able to inhibit H. pylori persistent infection of gastric epithelial cells, reduce the damage caused by H. pylori, and could serve as a potential medicine to treat patients infected with H. pylori.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter pylori/metabolism , Urease/metabolism , Cholera Toxin/metabolism , Fluorescein-5-isothiocyanate/metabolism , Fluorescein-5-isothiocyanate/pharmacology , Helicobacter Infections/metabolism , Gastric Mucosa/metabolism , Epithelial Cells/metabolism , Polysaccharides/pharmacology , Polysaccharides/metabolism , Glucosyltransferases/metabolism , Cholesterol/metabolism
12.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 53(3): 421-425, 2022 May.
Article in Chinese | MEDLINE | ID: mdl-35642149

ABSTRACT

Objective: To measure with standard microbiology methods the sensitivity of 4 commonly used testing methods for Helicobacter pylori (Hp) and to conduct a comparative study of the correlations and differences across the 4 methods. Methods: With the Hp standard strain (SS1) as the reference, colony forming units (CFU) as the units of quantitative analysis for detection performance, and gradient dilution of SS1 suspension as the simulation sample, we measured the sensitivity of 4 Hp testing methods, including bacterial culture, rapid urease test, antigen test, and quantitative fluorescent PCR. CFU values at different concentrations corresponding to the 4 commonly used Hp testing methods were documented and the correlations and differences were analyzed accordingly. Results: The sensitivity of Hp bacterial culture, rapid urease test, antigen test and quantitative fluorescent PCR was 2.0×10 CFU/mL, 2.0×10 5 CFU/mL, 2.0×10 5 CFU/mL, and 2.0×10 2 CFU/mL, respectively. Conclusion: The testing turnover time and sensitivity of different laboratory methods for Hp testing varied significantly. The quantitative fluorescent PCR and bacterial culture both showed relatively high sensitivity, but bacterial culture has complicated operation procedures and is too time-consuming. The rapid urease test and antigen test both were simple and quick to perform, but showed low sensitivity. For clinical and laboratory testing of Hp, appropriate testing method that can identify the corresponding changes of Hp should be selected according to the actual testing purpose.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Helicobacter Infections/diagnosis , Helicobacter pylori/genetics , Humans , Real-Time Polymerase Chain Reaction , Urease
13.
Ann Transl Med ; 10(6): 376, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35434022

ABSTRACT

Background and Objective: The distribution of components in the cell membrane is not uniform, but is organized into specific functional microdomains, known as "lipid rafts". These lipid rafts consist of cholesterol, sphingolipids, and various proteins. Studies have shown that lipid rafts contain multiple proteins that are closely related to signal transduction and immune response. Furthermore, lipid rafts are the sites where a variety of pathogens invade the cells, and are associated with the persistent infection of some pathogens, especially Helicobacter pylori (Hp). We are going to explore a new method to treat Hp by discussing the important role of lipid rafts in Hp persistent infection. Methods: Papers on lipid rafts were retrieved to analyze the evolution of the definition of lipid raft, research techniques, and studies on the correlation of lipid rafts with pathogens infecting host cells. Key Content and Findings: Hp uses cholesterol-α-glucosyltransferase (CGT) to extract cholesterol from the lipid rafts of host cell membrane and destroys the integrity of the lipid rafts, which contributes to its immune escape; Using drugs to inhibit the destruction of lipid rafts by CGT can inhibit the growth of Hp and help the body clear Hp. Conclusions: Lipid rafts are key to persistent Hp infection, and a new field of research on pathogen-host cell interactions and signal transduction. Researches on lipid rafts may promote a new breakthrough in the field of treatment of Hp.

14.
Ann Transl Med ; 9(20): 1521, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34790727

ABSTRACT

BACKGROUND: Regulatory T cells (Tregs) are an important cell subgroup of CD4+ T cells. Treg cells are critically involved in inducing immune tolerance, maintaining immune environment homeostasis, and preventing the occurrence of autoimmune diseases. Under normal conditions, the number of Tregs in the body is very small. This research was designed to establish an effective method to expand human peripheral blood Tregs in vitro and to analyze phenotype, purity, and function of Treg cells post-expansion. METHODS: Peripheral blood was obtained from healthy donors. CD4+CD25+CD127dim/- Treg cells were isolated from peripheral blood mononuclear cells (PBMCs) by magnetic-activated cell sorting (MACS), and an optimized culture system was used for amplification. The in vitro amplification ability of Treg cells was evaluated to determine the expression and purity of Treg cell-specific surface markers in different culture cycles. The suppressive function of Treg was determined by in vitro lymphocyte proliferation assay. RESULTS: Treg cells could be successfully isolated by magnetic activated cell sorting (MACS). After 21 days of in vitro culture, the mean expansion fold was 2,009±452.2 in ≤60 years, and there was a significant difference between the younger group and the older than 60 years group (1,238±330.0). Flow cytometry analysis revealed that the percentages of CD4+CD25+ cells and FOXP3+ cells were (93.25±3.05)% and (94.19±4.21)% on day 14, and (92.86±4.36)% and (91.55±5.62)% on day 21, respectively. In addition, the proportions of CD8+ T, CD19+ B, CD3-CD56+ natural killer cell (NK), and CD3+ CD56+ natural killer T cell (NKT) were extremely low. Lymphocyte proliferation assay demonstrated that Tregs could inhibit the proliferation of CD8+ T cells more effectively than that of CD4+ T cells. Furthermore, the suppressive capacity of Tregs was correlated with Treg-to-PBMCs ratios. CONCLUSIONS: We successfully established a technical protocol for manufacturing a large quantity of Tregs with high efficiency in vitro. The expanded Tregs have a steady FOXP3 expression and exhibited a potent immune suppression, which might have great significance in adoptive Treg therapy for treating graft-versus-host disease and autoimmune diseases.

15.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 52(5): 794-798, 2021 Sep.
Article in Chinese | MEDLINE | ID: mdl-34622595

ABSTRACT

OBJECTIVE: To preparethe poly lactic-co-glycolic acid (PLGA) microspheres and PLGA-chitosan microspheres containing Helicobacter pylori recombinant protein, namely the BIB protein, and to explore their optimal preparation parameters and in vitro release performance in gastric and intestinal fluids. METHODS: Double emulsions (water-in-oil-in-water, or W1/O/W2) solvent evaporation method was used to prepare the BIB-PLGA microspheres and the BIB-PLGA-chitosan microspheres. Univariate analysis was done to study the impact of the water-to-oil ratio (W1/O), PLGA mass fraction and PVA concentration on the morphology, particle size, polydispersity index (PDI), encapsulation efficiency (EE), and drug loading (DL) so as to identify the optimal parameters. Bicinchoninic acid (BCA) assay was used to determine the protein concentration and the release efficiency of BIB. RESULTS: The optimal preparation parameters identified in the study were as follows: W1/O at 1∶2, PLGA mass fraction at 5%, and PVA mass fraction at 0.2%. The BIB-PLGA microspheres were found to be (2.11±0.08) µm in particle size, 0.35±0.18 in PDI, (78.20±1.73)% in EE and (10.58±0.23)% in DL. The BIB-PLGA-chitosan microspheres were (2.28±0.52) µm in particle size, 0.39±0.54 in PDI, and (78.87±1.30)% and (15.50±0.25)% in EE and DL, respectively. Both BIB-PLGA microspheres and BIB-PLGA-chitosan microspheres showed slow-release property in gastric and intestinal fluids in vitro, with BIB-PLGA-chitosan microspheres showing better slow-release performance. CONCLUSION: The BIB-PLGA microspheres and BIB-PLGA-chitosan microspheres prepared with the double emulsions solvent evaporation method showed high DL and EE, controllable particle sizes, dispersive appearance, and slow-release property in gastric and intestinal fluids in vitro.


Subject(s)
Chitosan , Helicobacter pylori , Glycols , Lactic Acid , Microspheres , Polyglycolic Acid , Polylactic Acid-Polyglycolic Acid Copolymer , Recombinant Proteins
16.
J Am Chem Soc ; 143(36): 14877-14883, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34467760

ABSTRACT

The photovoltaic performance of Cs2AgBiBr6 perovskite is limited by its light-harvesting ability owing to its broad bandgap. Here, we introduced three indoline dyes, D102, D131, and D149, to sensitize the TiO2 electron transport layer that was employed in the Cs2AgBiBr6 perovskite solar cells (PSCs). The perovskite-indoline dye hybrid cells worked with higher power conversion efficiencies (PCEs) than the corresponding dye-sensitized solar cells and the PSC. Extended absorption resulted in a higher short-circuit current density, up to 8.24 mA cm-2, and a maximum PCE of 4.23% in the case of D149, for instance. The double perovskite worked as a p-type interlayer between the dyes and spiro-OMeTAD to convey the holes from the former to the latter, resulting in enhancement in the overall performance.

17.
J Tradit Chin Med ; 41(4): 530-538, 2021 08.
Article in English | MEDLINE | ID: mdl-34392645

ABSTRACT

OBJECTIVE: To investigate the anti-bacterial and anti-viral effects of Fengreqing oral liquid (, FRQ) in vitro and in vivo. METHODS: The minimum inhibitory concentrations of Fengreqing Oral Liquid against six gram-positive bacteria (Staphylococcus aureus, Streptococcus mutans, Peptostreptococcus anaerobius, Hemolytic streptococcus, Streptococcus pneumoniae, Klebsiella pneumoniae), seven gram-negative bacteria (Escherichia coli, Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Haemophilus influenzae, Helicobacter pylori, Pseudomonas aeruginosa, Gardnerella vaginalis) and Candida albicans were detected by the paper disc diffusion method. The inhibition rate of A/PuertoRico/8/34(H1N1) (PR8) influenza virus in different concentrations of Fengreqing oral solution was detected by chicken embryo method. CCK8 method was used to detect the half-cell infection of RSV, VSV and CVB3. The effect of FRQ on the survival curve of mice was detected by using co-infection model of Streptococcus pneumoniae and influenza virus. RESULTS: In vitro, FRQ can inhibit Actinobacillus actinomycetemcomitans, Helicobacter pylori, Gardnerella vaginalis, Staphylococcus aureus, Streptococcus mutans and Streptococcus pneumoniae and has an antiviral effect on the envelope virus H1N1. In vivo, Fengreqing oral solution had therapeutic effect on influenza-Streptococcus pneumoniae co-infection in mice, significantly improving the survival rate of mice. The medium dose and low dose FRQ significantly prolonged the survival time of mice. CONCLUSION: FRQ has good anti-bacterial and anti-viral effectsin vivo and in vitro.


Subject(s)
Helicobacter pylori , Influenza A Virus, H1N1 Subtype , Animals , Anti-Bacterial Agents , Antiviral Agents , Chick Embryo , Mice , Microbial Sensitivity Tests , Staphylococcus aureus
18.
Opt Express ; 29(2): 663-673, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33726297

ABSTRACT

We theoretically investigate the formation of the high-order fractional alignment echo in OCS molecule and systematically study the dependence of echo intensity on the intensities and time delay of the two excitation pulses. Our simulations reveal an intricate dependence of the intensity of high-order fractional alignment echo on the laser conditions. Based on the analysis with rotational density matrix, this intricate dependence is further demonstrated to arise from the interference of multiple quantum pathways that involve multilevel rotational transitions. Our result provides a comprehensive multilevel picture of the quantum dynamics of high-order fractional alignment echo in molecular ensembles, which will facilitate the development of "rotational echo spectroscopy."

19.
J Microbiol Immunol Infect ; 54(5): 918-925, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33531203

ABSTRACT

OBJECTIVES: Norovirus is associated with one-fifth of all gastroenteritis cases, but basic epidemiological data is lacking, especially in developing countries. As long-term surveillance on norovirus gastroenteritis is scarce in western China, this study aims to update the epidemiological knowledge of norovirus gastroenteritis and to characterize the genotypes of norovirus strains. METHODS: Stool samples were collected from hospitalized children under 5 years old with gastroenteritis in Chengdu, China. All samples were tested for norovirus as well as rotavirus, sapovirus, enteric adenovirus, and astrovirus by real-time RT-PCR. RdRp and VP1 genes were sequenced in norovirus-positive samples to investigate viral phylogenies. RESULTS: Of the 1181 samples collected from 2015 to 2019, 242 (20.5%) were positive for norovirus. Among norovirus-positive cases, 65 cases had co-infection with another virus; norovirus/enteric adenovirus was most frequently detected (50.8%, 33/65). The highest positive rate was observed in children aged 13-18 months (23.7%, 68/287). Norovirus infection peaked in autumn (36.6%, 91/249), followed by summer (20.3%, 70/345). Pearson correlation analysis showed significant correlation between the norovirus-positive rate and humidity (r = 0.773, P < 0.05). GII.4 Sydney 2012 [P31] (48.5%, 79/163) and GII.3 [P12] (35.6%, 58/163) were the dominant norovirus strains. CONCLUSIONS: Norovirus has become one of the most common causes of viral gastroenteritis in children under 5 years old in western China. Continuous monitoring is imperative for predicting the emergence of new epidemic strains and for current vaccine development.


Subject(s)
Caliciviridae Infections/epidemiology , Gastroenteritis/epidemiology , Norovirus/isolation & purification , Caliciviridae Infections/virology , Child, Preschool , China/epidemiology , Coinfection/epidemiology , Coinfection/virology , Feces/virology , Female , Gastroenteritis/virology , Genes, Viral , Genotype , Hospitalization , Humans , Infant , Infant, Newborn , Male , Norovirus/classification , Norovirus/genetics , Phylogeny , Risk Factors , Seasons , Viruses/classification , Viruses/genetics , Viruses/isolation & purification
20.
J Am Chem Soc ; 143(5): 2207-2211, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33522803

ABSTRACT

The power conversion efficiency (PCE) of Cs2AgBiBr6-based perovskite solar cells (PSCs) is still low owing to the inherent defects of Cs2AgBiBr6 films. Herein, we demonstrate a carboxy-chlorophyll derivative (C-Chl)-sensitized mesoporous TiO2 (m-TiO2) film as an electron transport layer (ETL) to enhance and extend the absorption spectrum of Cs2AgBiBr6-based PSCs. The C-Chl-based device achieves a significantly improved PCE, exceeding 3% for the first time, with an increase of 27% in short-circuit current density. Optoelectronic investigations confirm that the introduction of C-Chl reduces the defects, accelerates the electron extraction, and suppresses charge recombination at the interface of ETL/perovskite. Moreover, the unencapsulated PSCs display restrained hysteresis and great stability under ambient conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...