Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Control Release ; 374: 112-126, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39117112

ABSTRACT

Primary sclerosing cholangitis (PSC) is a challenging cholestatic liver disease marked by progressive bile duct inflammation and fibrosis that has no FDA-approved therapy. Although obeticholic acid (OCA) has been sanctioned for PSC, its clinical utility in PSC is constrained by its potential hepatotoxicity. Here, we introduce a novel therapeutic construct consisting of OCA encapsulated within a reactive oxygen species (ROS)-responsive, biodegradable polymer, further cloaked with human placenta-derived mesenchymal stem cell (hP-MSC) membrane (MPPFTU@OCA). Using PSC patient-derived organoid models, we assessed its cellular uptake and cytotoxicity. Moreover, using a PSC mouse model induced by 3,5-diethoxycarbonyl-1,4-dihydro-collidine (DDC), we demonstrated that intravenous administration of MPPFTU@OCA not only improved cholestasis via the FXR-SHP pathway but also reduced macrophage infiltration and the accumulation of intracellular ROS, and alleviated mitochondria-induced apoptosis. Finally, we verified the ability of MPPFTU@OCA to inhibit mitochondrial ROS thereby alleviating apoptosis by measuring the mitochondrial adenosine triphosphate (ATP) concentration, ROS levels, and membrane potential (ΔΨm) using H2O2-stimulated PSC-derived organoids. These results illuminate the synergistic benefits of integrating an ROS-responsive biomimetic platform with OCA, offering a promising therapeutic avenue for PSC.


Subject(s)
Chenodeoxycholic Acid , Cholangitis, Sclerosing , Reactive Oxygen Species , Animals , Reactive Oxygen Species/metabolism , Chenodeoxycholic Acid/analogs & derivatives , Chenodeoxycholic Acid/administration & dosage , Chenodeoxycholic Acid/therapeutic use , Humans , Cholangitis, Sclerosing/drug therapy , Apoptosis/drug effects , Female , Mice, Inbred C57BL , Mesenchymal Stem Cells/drug effects , Mice , Nanoparticles/administration & dosage , Male , Nanoparticle Drug Delivery System , Placenta/metabolism , Placenta/drug effects , Pregnancy
2.
Nanoscale ; 16(25): 12149-12162, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38833269

ABSTRACT

Together, tumor and virus-specific tissue-resident CD8+ memory T cells (TRMs) of hepatocellular carcinoma (HCC) patients with Hepatitis B virus (HBV) infection can provide rapid frontline immune surveillance. The quantity and activity of CD8+ TRMs were correlated with the relapse-free survival of patients with improved health. However, HBV-specific CD8+ TRMs have a more exhausted phenotype and respond more actively under anti-PDL1 or PD1 treatment of HBV+HCC patients. Vaccination strategies that induce a strong and sustained CD8+ TRMs response are quite promising. Herein, a biodegradable poly(D,L-lactide-co-glycolide) microsphere and nanosphere particle (PLGA N.M.P) delivery system co-assembled by anti-PD1 antibodies (aPD1) and loaded with ovalbumin (OVA-aPD1 N.M.P) was fabricated and characterized for size (200 nm and 1 µm diameter), charge (-15 mV), and loading efficiencies of OVA (238 µg mg-1 particles) and aPD1 (40 µg mg-1 particles). OVA-aPD1 N.M.P could stimulate the maturation of BMDCs and enhance the antigen uptake and presentation by 2-fold compared to free OVA. The nanoparticles also induced the activation of macrophages (RAW 264.7) to produce a high level of cytokines, including TNF-α, IL-6 and IL-10. In vivo stimulation of mice using OVA-aPD1 N.M.P robustly enhanced IFN-γ-producing-CD8+ T cell infiltration in tumor tissues and the secretion of IgG and IgG2a/IgG1 antibodies. OVA-aPD1 N.M.P delivered OVA to increase the activation and proliferation of OVA-specific CD8+ TRMs, and its combination with anti-PD1 antibodies promoted complete tumor rejection by the reversal of tumor-infiltrating CD8+ T cell exhaustion. Thus, PLGA N.M.P could induce a strong CD8+ TRMs response, further highlighting its therapeutic potential in enhancing an antitumor immune response.


Subject(s)
CD8-Positive T-Lymphocytes , Carcinoma, Hepatocellular , Liver Neoplasms , Polylactic Acid-Polyglycolic Acid Copolymer , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/therapy , Mice , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms/therapy , Mice, Inbred C57BL , Ovalbumin/immunology , Ovalbumin/chemistry , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Nanoparticles/chemistry , Cancer Vaccines/immunology , Cancer Vaccines/chemistry , Memory T Cells/immunology , Vaccination , Humans , RAW 264.7 Cells , Immunologic Memory
SELECTION OF CITATIONS
SEARCH DETAIL