Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 160
Filter
Add more filters










Publication year range
1.
Mar Drugs ; 22(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38786595

ABSTRACT

Thirty-two fungal polyketide derivatives, including eleven new compounds, namely (3R,5'R)-5-hydroxytalaroflavone (1), talaroisochromenols A-C (3, 5, and 11), (8R,9R,10aR)-5-hydroxyaltenuene (13), (8R,9R,10aS)-5-hydroxyaltenuene (14), (8R,9S,10aR)-5-hydroxyaltenuene (15), nemanecins D and E (25 and 26), 2,5-dimethyl-8-iodochromone (27), and talarofurolactone A (29), together with one new naturally occurring but previously synthesized metabolite, 6-hydroxy-4-methoxycoumarin (28), were isolated and identified from the deep-sea cold-seep-derived fungus Talaromyces sp. CS-258. Among them, racemic ((±)-11) or epimeric (13-15, 25, and 26) mixtures were successfully separated by chiral or gradient elution HPLC. Meanwhile, compound 27 represents a rarely reported naturally occurring iodinated compound. Their planar structures as well as absolute configurations were determined by extensive analysis via NMR, MS, single-crystal X-ray diffraction, Mosher's method, and ECD or NMR calculation (with DP4+ probability analysis). Possible biosynthetic routes of some isolated compounds, which are related to chromone or isochromone biosynthetic pathways, were put forward. The biological analysis results revealed that compounds 7, 9, 10, 18-22, 24, 30, and 31 showed broad-spectrum antibacterial activities against several human and aquatic pathogens with MIC ranges of 0.5-64 µg/mL.


Subject(s)
Anti-Bacterial Agents , Polyketides , Talaromyces , Talaromyces/chemistry , Talaromyces/metabolism , Polyketides/pharmacology , Polyketides/chemistry , Polyketides/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Microbial Sensitivity Tests , Molecular Structure
2.
J Nat Prod ; 87(5): 1347-1357, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38701173

ABSTRACT

A chemical investigation of a cold-seep-sediment-derived fungus, Pseudallescheria boydii CS-793, resulted in characterization of 10 novel bergamotene-derived sesquiterpenoids, pseuboyenes A-J (1-10). Their structures were elucidated by spectroscopic and X-ray crystallographic analyses as well as using the modified Mosher's method. Compound 1 represents the first example of a ß-bergamotene containing a 6-oxobicyclo[3.2.1]octane nucleus adducted with a methyl lactate unit, while 8-10 involve a skeletal rearrangement from bergamotene. Compounds 2-5 showed significant antifungal activities against Colletotrichum gloeosporioides Penz. and Fusarium oxysporum with MICs ranging from 0.5 to 8 µg/mL. Compound 4 exhibited an in vitro anti-F. proliferatum effect with an EC50 value of 1.0 µg/mL.


Subject(s)
Antifungal Agents , Microbial Sensitivity Tests , Pseudallescheria , Sesquiterpenes , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Molecular Structure , Colletotrichum/drug effects , Fusarium/drug effects , Crystallography, X-Ray
3.
Org Biomol Chem ; 22(19): 3979-3985, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38691112

ABSTRACT

Two new sesterterpenoids, sesterchaetins A and B (1 and 2), and two new diepoxide polyketides, chaetoketoics A and B (3 and 4), were characterized from the culture extract of Chaetomium globosum SD-347, a fungal strain derived from deep sea-sediment. Their structures and absolute configurations were unambiguously determined by detailed NMR, mass spectra, and X-ray crystallographic analysis. Compounds 1 and 2 contained a distinctive 5/8/6/5 tetracyclic carbon-ring-system, which represented a rarely occurring natural product framework. The new isolates 1-4 exhibited selective antimicrobial activities against human and aquatic pathogenic bacteria and plant-pathogenic fungi.


Subject(s)
Anti-Infective Agents , Chaetomium , Polyketides , Sesquiterpenes , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology , Polyketides/chemistry , Polyketides/isolation & purification , Aquatic Organisms/chemistry , Chaetomium/chemistry , Bacteria/drug effects , Crystallography, X-Ray
4.
Bioorg Chem ; 147: 107417, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701596

ABSTRACT

Marine natural products play an important role in biopesticides. Seven new secondary metabolites with different structural classes, including two cycloheptapeptides, scortide A (1) and scortide B (2), two 19-nor-diterpenoids, talascortene H (3) and talascortene I (4), two diterpenoid acids, talascortene J (5) and talascortene K (6), and one triterpenoid, talascortene L (7) were isolated and identified from the sea-anemone-derived endozoic fungus Talaromyces scorteus AS-242. Their structures were comprehensively assigned by spectroscopic data analysis, single-crystal X-ray diffraction, tandem mass spectrometry, and electronic circular dichroism (ECD) calculations. The result of the antimicrobial assay demonstrated that compounds 1 - 6 have inhibitory activity against several human, aquatic, and plant pathogens with minimum inhibitory concentration (MIC) values ranging from 1 to 64 µg/mL. Specially, compounds 2 and 4 showed significant activities against the pathogenic fungus Curvularia spicifera with the MIC value of 1 µg/mL, providing an experimental basis of 2 and 4 with the potential as lead compounds to be developed into biopesticides.


Subject(s)
Microbial Sensitivity Tests , Talaromyces , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Dose-Response Relationship, Drug , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/isolation & purification , Molecular Structure , Structure-Activity Relationship , Talaromyces/chemistry , Talaromyces/metabolism , Diterpenes/chemistry , Diterpenes/isolation & purification , Diterpenes/pharmacology
5.
Angew Chem Int Ed Engl ; : e202403963, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635317

ABSTRACT

(±)-Penindolenes A-D (1-4), the first representatives of indole terpenoids featuring a γ-lactam skeleton, were isolated from the mangrove-derived endophytic fungus Penicillium brocae MA-231. Our bioactivity tests revealed their potent antimicrobial and acetylcholinesterase inhibitory activities. The biosynthetic reactions by the five enzymes PbaABCDE leading to γ-lactam ring formation were identified with heterologous expression and in vitro enzymatic assays. Remarkably, the cytochrome P450 monooxygenase PbaB and its homolog in Aspergillus oryzae catalyzed the 2,3-cleavage of the indole ring to generate two keto groups in 1. This is the first example of the oxidative cleavage of indole by a P450 monooxygenase. In addition, rare secondary amide bond formation by the glutamine synthetase-like enzyme PbaD was reported. These findings will contribute to the engineered biosynthesis of unnatural, bioactive indole terpenoids.

6.
Chem Biodivers ; : e202400584, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38544421

ABSTRACT

Two pairs of new enantiomeric hydroxyphenylacetic acid derivatives, (±)-corylophenols A and B ((±)-1 and (±)-2), a new α-pyrone analogue, corylopyrone A (3), and six andrastin-type meroterpenoids (4-9) were isolated and identified from the deep-sea cold-seep sediment-derived fungus Penicillium corylophilum CS-682. Their structures and stereo configurations were determined by detailed spectroscopic analysis of NMR and MS data, chiral HPLC analysis, J-based configuration analysis, and quantum chemical calculations of ECD, specific rotation, and NMR (with DP4+ probability analysis). Compound 3 showed inhibitory activity against some strains of pathogenic bacteria.

7.
Beilstein J Org Chem ; 20: 470-478, 2024.
Article in English | MEDLINE | ID: mdl-38440169

ABSTRACT

Pseudallenes A and B (1 and 2), the new and rare examples of sulfur-containing ovalicin derivatives, along with three known analogues 3-5, were isolated and identified from the culture extract of Pseudallescheria boydii CS-793, a fungus obtained from the deep-sea cold seep sediments. Their structures were established by detailed interpretation of NMR spectroscopic and mass spectrometric data. X-ray crystallographic analysis confirmed and established the structures and absolute configurations of compounds 1-3, thus providing the first characterized crystal structure of an ovalicin-type sesquiterpenoid. In the antimicrobial assays, compounds 1-3 showed broad-spectrum inhibitory activities against several plant pathogens with MIC values ranging from 2 to 16 µg/mL.

8.
Bioorg Chem ; 143: 107073, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176375

ABSTRACT

Six new highly oxygenated and polycyclic andrastin-type meroterpenoids, namely, bialorastins A-F (1-6), were discovered from the culture of Penicillium bialowiezense CS-283, a fungus isolated from the deep-sea cold seep squat lobster Shinkaia crosnieri. The planar structures and absolute configurations of these compounds were determined by detailed analysis of spectroscopic data, single crystal X-ray diffraction, and TDDFT-ECD calculations. Structurally, bialorastin A (1) represents a rare 17-nor-andrastin that possesses an unusual 2-oxaspiro[4.5]decane-1,4-dione moiety with a unique 6/6/6/6/5 polycyclic system, while bialorastin B (2) is also a 17-nor-andrastin featuring a gem-propane-1,2-dione moiety. Additionally, bialorastins C-E (3-5) possess a 6/6/6/6/5/5 fused hexacyclic skeleton, characterized by distinctive 3,23-acetal/lactone-bridged functionalities. All isolated compounds were evaluated for their proangiogenic activities in transgenic zebrafish. Compound 3 exhibited significant proangiogenic activity, which notably increased the number and length of intersegmental blood vessels in model zebrafish in a dose-dependent manner at concentrations of 20 and 40 µM. On a molecular scale, the tested compounds were modeled through molecular docking to have insight into the interactions with the possible target VEGFR2. Mechanistically, RT-qPCR results revealed that compound 3 could promote angiogenesis via activating VEGFR2 and subsequently activating the downstream PI3K/AKT and MAPK signaling pathways. These findings indicate that 3 could be a potential lead compound for developing angiogenesis agents.


Subject(s)
Penicillium , Terpenes , Zebrafish , Animals , Fungi , Molecular Docking Simulation , Molecular Structure , Penicillium/chemistry , Phosphatidylinositol 3-Kinases , Terpenes/chemistry , Terpenes/pharmacology
9.
Phytochemistry ; 220: 114000, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38278465

ABSTRACT

Sumalarins D-G (1-4), four previously undescribed curvularin derivatives, along with two known related metabolites, curvularin (5) and dehydrocurvularin (6), were isolated and identified from the mangrove-derived fungus Penicillium sumatrense MA-325. Among them, sumalarin D (1) represents a unique example of curvularin derivative featuring a 5-methylfuran-2-yl-methyl group. Their structures were elucidated based on analysis of NMR and MS data as well as comparison of ECD spectra and quantum chemical calculations of NMR, and compound 1 was confirmed by X-ray crystallographic analysis. Compounds 1, 2, 5, and 6 are active against aquatic pathogenic bacteria Vibrio alginolyticus and V. harveyi with MIC values ranging from 4 to 64 µg/mL, while compound 6 is cytotoxic against tumor cell lines 5673, HCT 116, 786-O, and Hela with IC50 values of 3.5, 10.6, 10.9, and 14.9 µM, respectively.


Subject(s)
Antineoplastic Agents , Penicillium , Zearalenone/analogs & derivatives , Molecular Structure , Penicillium/chemistry , Antineoplastic Agents/chemistry
10.
J Nat Prod ; 87(2): 381-387, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38289330

ABSTRACT

Tryptoquivalines are highly toxic metabolites initially isolated from the fungus Aspergillus clavatus. The relative and absolute configuration of tryptoquivaline derivates was primarily established by comparison of the chemical shifts, NOE data, and ECD calculations. A de novo determination of the complete relative configuration using NMR spectroscopy was challenging due to multiple spatially separated stereocenters, including one nonprotonated carbon. In this study, we isolated a new tryptoquivaline derivative, 12S-deoxynortryptoquivaline (1), from the marine ascidian-derived fungus Aspergillus clavatus AS-107. The correct assignment of the relative configuration of 1 was accomplished using anisotropic NMR spectroscopy, while the absolute configuration was determined by comparing calculated and experimental ECD spectra. This case study highlights the effectiveness of anisotropic NMR parameters over isotropic NMR parameters in determining the relative configuration of complex natural products without the need for crystallization.


Subject(s)
Urochordata , Animals , Magnetic Resonance Spectroscopy/methods , Aspergillus/chemistry , Fungi , Molecular Structure
11.
J Antibiot (Tokyo) ; 77(1): 13-20, 2024 01.
Article in English | MEDLINE | ID: mdl-37884757

ABSTRACT

Three new compounds, including one steroid named penivariod A (1) and two polyketides penivarides A and B (2 and 3), as well as six known derivatives (4-9) were isolated from Penicillium variabile EN-394, a fungus afforded from the marine red alga Rhodomela confervoides. Their structures were elucidated by analysis of the HRESIMS, 1D and 2D NMR. The absolute stereochemistry was determined by X-ray crystallographic data, gauge-independent atomic orbital (GIAO) NMR shift calculation followed by DP4+ analysis combined with calculated electronic circular dichroism (ECD). Antimicrobial activities for the new compounds (1-3) were evaluated against human- and aquatic-pathogenic bacteria as well as plant pathogenic fungi. Compound 1 exhibited potent antimicrobial activity against most of the pathogenic strains, especially for Escherichia coli and Pseudomonas aeruginosa, with MIC values of 1.0 and 2.0 µg ml-1, respectively.


Subject(s)
Anti-Infective Agents , Penicillium , Polyketides , Rhodophyta , Humans , Anti-Infective Agents/pharmacology , Fungi , Molecular Structure , Penicillium/chemistry , Polyketides/chemistry
12.
J Antibiot (Tokyo) ; 76(12): 699-705, 2023 12.
Article in English | MEDLINE | ID: mdl-37848580

ABSTRACT

Two new nonadride derivatives, namely, talarodrides G and H (1 and 2), and one new depsidone derivative, botryorhodine K (3), together with a known nonadride analogue (4), were characterized from the Magellan Seamount-derived fungus Talaromyces scorteus AS-242. Their structures were established by detailed interpretation of NMR spectroscopic and mass spectrometry data analysis. X-ray crystallographic analysis of compounds 1 and 3 confirmed their structures and absolute configurations, representing the first characterized crystal structure of a nonadride-type polyketide. The isolated compounds exhibited potent antimicrobial activities against the pathogenic bacterium MRSA and V. parahaemolyticus and pathogenic fungi C. gloeosporioides, F. oxysporum, and F. proliferatum, with MIC values ranging from 1 to 64 µg ml-1.


Subject(s)
Anti-Infective Agents , Polyketides , Talaromyces , Polyketides/chemistry , Anti-Infective Agents/chemistry , Talaromyces/chemistry , Magnetic Resonance Spectroscopy/methods , Molecular Structure
13.
Nat Prod Rep ; 40(12): 1874-1900, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37642299

ABSTRACT

Covering: up to the end of July, 20231,2-Oxazine is a heterocyclic scaffold rarely found in natural products and is characterized by a directly connected N-O bond in a six-membered ring. Since the discovery of geneserine, the first 1,2-oxazine-containing natural product (1,2-oxazine NP) being isolated from Calabar bean (Physostigma venenosum) in 1925, a total of 76 naturally occurring 1,2-oxazine NPs have been isolated and identified from various sources, which have attracted the attention of researchers in the field of natural product chemistry, organic synthesis, biosynthesis, and pharmacology. This review summarizes the chemical family of 1,2-oxazine NPs, focusing on their source organisms, structural diversities, chemical synthesis, and biosynthesis.


Subject(s)
Biological Products , Biological Products/pharmacology , Biological Products/chemistry , Oxazines/pharmacology , Oxazines/chemistry
14.
J Agric Food Chem ; 71(36): 13316-13324, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37650146

ABSTRACT

Marine fungus-derived natural products are an important source of antimicrobial compounds against marine aquatic pathogens. Here, we describe the isolation and characterization of five new pentadepsipeptides, aspertides A-E (1-5), containing a unique p-methoxycinnamoyl amide group, from the marine fungi Aspergillus tamarii MA-21 and Aspergillus insuetus SD-512. Among them, aspertides B-E (2-5) also possessed uncommon amino acid residues, such as 3-hydroxyproline, 2,3-dihydroxyproline, or pipecolinic acid. The structures of these compounds were elucidated on the basis of NMR and mass spectroscopic analyses. The absolute configurations of them were established by chiral HPLC analyses of the acidic hydrolysates and NMR calculations with DP4+ probability analysis. In bio-activity assays, compounds 4 and 5 exhibited antibacterial activities against aquatic-pathogenic bacteria, including Edwardsiella tarda, Vibrio alginolyticus, Vibrio anguillarum, Vibrio vulnificus, and Staphylococcus aureus, with MIC values of 8-32 µg/mL.


Subject(s)
Anti-Infective Agents , Aspergillus , Anti-Infective Agents/pharmacology , Amides
15.
Mar Life Sci Technol ; 5(2): 223-231, 2023 May.
Article in English | MEDLINE | ID: mdl-37275535

ABSTRACT

Verrucosidins, a methylated α-pyrone class of polyketides rarely reported upon, have been implicated in one or more neurological diseases. Despite the significance of verrucosidins as neurotoxins, the absolute configurations of most of the derivatives have not been accurately characterized yet. In this study, three pairs of C-9 epimeric verrucosidin derivatives, including the known compounds penicyrones A and B (1a/1b) and 9-O-methylpenicyrones A and B (2a/2b), the new compounds 9-O-ethylpenicyrones A and B (3a/3b), together with the related known derivative verrucosidin (4), were isolated and identified from the culture extract of Penicillium cyclopium SD-413, which was obtained from the marine sediment collected from the East China sea. Their structures were established based on an in-depth analysis of nuclear magnetic resonances (NMR) and mass spectroscopic data. Determination of the absolute configurations of these compounds was accomplished by Mosher's method and time-dependent density functional theory (TDDFT) calculations of electronic circular dichroism (ECD) and optical rotation (OR). The configurational assignment of penicyrone A demonstrated that the previously reported C-6 absolute configuration of verrucosidin derivatives needs to be revised from (6S) to (6R). The 9R/9S epimers of compounds 1-3 were found to exhibit growth inhibition against some pathogenic bacteria, indicating that they have potential as lead compounds for the creation of antimicrobial agents. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00173-2.

16.
Fitoterapia ; 168: 105559, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37271296

ABSTRACT

Four new oxepine-containing pyrazinopyrimidine alkaloids, versicoxepines A - D (1-4), two quinolinone alkaloid analogs including 3-hydroxy-6-methoxy-4-phenylquinolin-2(1H)-one (5) and 3-methoxy-6-hydroxy-4-phenylquinolin-2(1H)-one (6) which were new naturally occurring compounds, together with two known compounds (7 and 8) were isolated from Aspergillus versicolor AS-212, an endozoic fungus isolated from the deep-sea coral Hemicorallium cf. imperiale, which was collected from the Magellan Seamounts in the Western Pacific Ocean. Their structures were determined by extensive analysis of the spectroscopic and X-ray crystallographic data as well as by chiral HPLC analysis, ECD calculation, and DP4+ probability prediction. Structurally, versicoxepines B and C (2 and 3) represent the first example of a new oxepine-containing pyrazinopyrimidine alkaloid whose cyclic dipeptide moiety is composed of the same type of amino acid (Val or Ile). Compound 5 displayed antibacterial activity against aquatic pathogens, Vibrio harveyi and V. alginolyticus, with MICs of 8 µg/mL.


Subject(s)
Alkaloids , Aspergillus , Quinolones , Alkaloids/chemistry , Alkaloids/isolation & purification , Alkaloids/pharmacology , Aspergillus/chemistry , Molecular Structure , Oxepins/chemistry , Quinolones/chemistry , Quinolones/isolation & purification , Quinolones/pharmacology , Pacific Ocean , Crystallography, X-Ray , Anti-Bacterial Agents/pharmacology , Vibrio/drug effects , Magnetic Resonance Spectroscopy
17.
Mar Drugs ; 21(5)2023 May 10.
Article in English | MEDLINE | ID: mdl-37233487

ABSTRACT

Two new quinazolinone diketopiperazine alkaloids, including versicomide E (2) and cottoquinazoline H (4), together with ten known compounds (1, 3, and 5-12) were isolated and identified from Aspergillus versicolor AS-212, an endozoic fungus associated with the deep-sea coral Hemicorallium cf. imperiale, which was collected from the Magellan Seamounts. Their chemical structures were determined by an extensive interpretation of the spectroscopic and X-ray crystallographic data as well as specific rotation calculation, ECD calculation, and comparison of their ECD spectra. The absolute configurations of (-)-isoversicomide A (1) and cottoquinazoline A (3) were not assigned in the literature reports and were solved in the present work by single-crystal X-ray diffraction analysis. In the antibacterial assays, compound 3 exhibited antibacterial activity against aquatic pathogenic bacteria Aeromonas hydrophilia with an MIC value of 18.6 µM, while compounds 4 and 8 exhibited inhibitory effects against Vibrio harveyi and V. parahaemolyticus with MIC values ranging from 9.0 to 18.1 µM.


Subject(s)
Alkaloids , Anthozoa , Sesquiterpenes , Animals , Diketopiperazines/chemistry , Molecular Structure , Fungi , Alkaloids/chemistry , Anti-Bacterial Agents/chemistry
18.
J Antibiot (Tokyo) ; 76(9): 563-566, 2023 09.
Article in English | MEDLINE | ID: mdl-37258804

ABSTRACT

A new steroid with strong antibacterial activity, rubensteroid A (1), along with its decarboxylic analogue, solitumergosterol A (2), were isolated and identified from the Magellan Seamount-derived fungus Penicillium rubens AS-130. The structure and absolute configuration of compound 1 were established by detailed interpretation of NMR spectroscopic analysis, mass spectrometry data, and TDDFT-ECD calculations. Compound 1 had a rare 6/6/6/6/5 pentacyclic system, which might be the [4 + 2] Diels-Alder adduct of 14,15-didehydroergosterol (14-DHE) cycloaddition with maleic acid or maleimide, followed by decarboxylation. Rubensteroid A (1) exhibited potent antibacterial activity against Escherichia coli and Vibrio parahaemolyticus, both with MIC value of 0.5 µg/mL.


Subject(s)
Anti-Bacterial Agents , Penicillium , Molecular Structure , Anti-Bacterial Agents/chemistry , Penicillium/chemistry , Steroids/pharmacology , Microbial Sensitivity Tests
19.
Nat Prod Res ; : 1-6, 2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37086479

ABSTRACT

Three new α-pyrone derivatives, annularins L-N (1-3), were isolated from the EtOAc extract of Penicillium herquei MA-370, a fungus obtained from the rhizospheric soil of the mangrove plant Rhizophora mucronata. The planar structures of compounds 1-3 were determined based on comprehensive spectral interpretation of the NMR and MS data. The absolute configuration of 1 was determined by X-ray crystallographic data and that of 2 was assigned by TDDFT calculations of its ECD spectrum and cotton effects comparison with those of 1. The antimicrobial activity of compounds 1-3 was evaluated.

20.
Phytochemistry ; 210: 113644, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36935049

ABSTRACT

Four undescribed bisabolane sesquiterpenes and one undescribed cyclopentene derivative, together with one undescribed naturally occurring cyclopentenone derivative, were isolated and identified from the culture of the endophytic fungus Trichoderma asperellum EN-764, which was obtained from the marine red alga Palisada papillosa. Their structures were determined by detailed interpretation of NMR and mass spectroscopic data, while the relative and absolute configurations were unambiguously established based on NOESY experiments, modified Mosher's method, X-ray diffraction, and quantum chemical calculations (ECD and DP4+ probability analysis). The antibacterial activities of the isolated compounds were evaluated, and they exhibited inhibitory activity against some aquatic pathogens with MIC values ranging from 4 to 64 µg/mL.


Subject(s)
Sesquiterpenes , Trichoderma , Molecular Structure , Monocyclic Sesquiterpenes , Trichoderma/chemistry , Sesquiterpenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...