Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.756
Filter
1.
World Neurosurg ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823445

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective therapy in ameliorating the motor symptoms of Parkinson's disease (PD). However, postoperative optimal contact selection is crucial for achieving the best outcome of STN-DBS surgery, but the process is currently a trial-and-error and time-consuming procedure that relies heavily on surgeons' clinical experience. METHODS: In this study, we propose a structural brain connectivity guided optimal contact selection method for STN-DBS. Firstly, we reconstruct the DBS electrode location and estimate the stimulation range using volumes of tissue activated (VTA) from each DBS contact. Then, we extract the structural connectivity features by concatenating fractional anisotropy (FA) and the number of streamlines (NOS) features of activated regions and the whole brain regions. Finally, we use a convolutional neural network (CNN) with convolutional block attention module (CBAM) to identify the structural connectivity features for the optimal contact selection. RESULTS: We review the data of 800 contacts from 100 patients with Parkinson disease for the experiment. The proposed method achieves promising results, with the average accuracy of 97.63%, average precision of 94.50%, average recall of 94.46% and average specificity of 98.18%, respectively. Our method can provide the suggestion for optimal contact selection. CONCLUSIONS: Our proposed method can improve the efficiency and accuracy of DBS optimal contact selection, reduce the dependence on surgeons' experience, and has the potential to facilitate the development of advanced DBS technology.

2.
Exp Cell Res ; : 114111, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823471

ABSTRACT

Skeletal muscle ischemia-reperfusion (IR) injury poses significant challenges due to its local and systemic complications. Traditional studies relying on two-dimensional (2D) cell culture or animal models often fall short of faithfully replicating the human in vivo environment, thereby impeding the translational process from animal research to clinical applications. Three-dimensional (3D) constructs, such as skeletal muscle spheroids with enhanced cell-cell interactions from human pluripotent stem cells (hPSCs) offer a promising alternative by partially mimicking human physiological cellular environment in vivo processes. This study aims to establish an innovative in vitro model, human skeletal muscle spheroids based on sphere differentiation from hPSCs, to investigate human skeletal muscle developmental processes and IR mechanisms within a controlled laboratory setting. By eticulously recapitulating embryonic myogenesis through paraxial mesodermal differentiation of neuro-mesodermal progenitors, we successfully established 3D skeletal muscle spheroids that mirror the dynamic colonization observed during human skeletal muscle development. Co-culturing human skeletal muscle spheroids with spinal cord spheroids facilitated the formation of neuromuscular junctions, providing functional relevance to skeletal muscle spheroids. Furthermore, through oxygen-glucose deprivation/re-oxygenation treatment, 3D skeletal muscle spheroids provide insights into the molecular events and pathogenesis of IR injury. The findings presented in this study significantly contribute to our understanding of skeletal muscle development and offer a robust platform for in vitro studies on skeletal muscle IR injury, holding potential applications in drug testing, therapeutic development, and personalized medicine within the realm of skeletal muscle-related pathologies.

3.
Article in English | MEDLINE | ID: mdl-38824427

ABSTRACT

Visible particle is an important issue in the biopharmaceutical industry, and it may occur across all the stages in the life cycle of biologics. Upon the occurrence of visible particles, it is often necessary to conduct chemical identification and root cause analysis to safeguard the safety and efficacy of the biotherapeutic products. In this article, we present a number of typical particles and relevant root cause analysis in the categories of extrinsic, intrinsic and inherent particles that are commonly encountered in the biopharma industry. In particular, the optical images of particles obtained both in situ and after isolation are provided, along with the spectral and elemental information. The particle identification was carried out with multiple microscopic and microspectroscopic techniques, including stereo optical microscopy, Fourier transform infrared microscopy, confocal Raman microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. Both commercial and in-house spectral databases were used for comparison and identification. In addition to particle identification, our significant efforts are placed on the root cause analysis of the addressed particles with the intention to provide a relatively whole picture of the particle related issues and practical references to particle mitigation for our peers in the biopharmaceutical industry.

4.
Res Sq ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38826463

ABSTRACT

Traditional feature dimension reduction methods have been widely used to uncover biological patterns or structures within individual spatial transcriptomics data. However, these methods are designed to yield feature representations that emphasize patterns or structures with dominant high variance, such as the normal tissue spatial pattern in a precancer setting. Consequently, they may inadvertently overlook patterns of interest that are potentially masked by these high-variance structures. Herein we present our graph contrastive feature representation method called CoCo-ST (Comparing and Contrasting Spatial Transcriptomics) to overcome this limitation. By incorporating a background data set representing normal tissue, this approach enhances the identification of interesting patterns in a target data set representing precancerous tissue. Simultaneously, it mitigates the influence of dominant common patterns shared by the background and target data sets. This enables discerning biologically relevant features crucial for capturing tissue-specific patterns, a capability we showcased through the analysis of serial mouse precancerous lung tissue samples.

5.
CNS Neurosci Ther ; 30(6): e14784, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828669

ABSTRACT

INTRODUCTION: Programmed death-ligand 1 (PD-L1) expression is an immune evasion mechanism that has been demonstrated in many tumors and is commonly associated with a poor prognosis. Over the years, anti-PD-L1 agents have gained attention as novel anticancer therapeutics that induce durable tumor regression in numerous malignancies. They may be a new treatment choice for neurofibromatosis type 2 (NF2) patients. AIMS: The aims of this study were to detect the expression of PD-L1 in NF2-associated meningiomas, explore the effect of PD-L1 downregulation on tumor cell characteristics and T-cell functions, and investigate the possible pathways that regulate PD-L1 expression to further dissect the possible mechanism of immune suppression in NF2 tumors and to provide new treatment options for NF2 patients. RESULTS: PD-L1 is heterogeneously expressed in NF2-associated meningiomas. After PD-L1 knockdown in NF2-associated meningioma cells, tumor cell proliferation was significantly inhibited, and the apoptosis rate was elevated. When T cells were cocultured with siPD-L1-transfected NF2-associated meningioma cells, the expression of CD69 on both CD4+ and CD8+ T cells was partly reversed, and the capacity of CD8+ T cells to kill siPD-L1-transfected tumor cells was partly restored. Results also showed that the PI3K-AKT-mTOR pathway regulates PD-L1 expression, and the mTOR inhibitor rapamycin rapidly and persistently suppresses PD-L1 expression. In vivo experimental results suggested that anti-PD-L1 antibody may have a synergetic effect with the mTOR inhibitor in reducing tumor cell proliferation and that reduced PD-L1 expression could contribute to antitumor efficacy. CONCLUSIONS: Targeting PD-L1 could be helpful for restoring the function of tumor-infiltrating lymphocytes and inducing apoptosis to inhibit tumor proliferation in NF2-associated meningiomas. Dissecting the mechanisms of the PD-L1-driven tumorigenesis of NF2-associated meningioma will help to improve our understanding of the mechanisms underlying tumor progression and could facilitate further refinement of current therapies to improve the treatment of NF2 patients.


Subject(s)
B7-H1 Antigen , Cell Proliferation , Meningeal Neoplasms , Meningioma , Neurofibromatosis 2 , T-Lymphocytes , Meningioma/metabolism , Meningioma/immunology , Meningioma/pathology , Humans , B7-H1 Antigen/metabolism , Cell Proliferation/drug effects , Cell Proliferation/physiology , Meningeal Neoplasms/metabolism , Meningeal Neoplasms/pathology , Meningeal Neoplasms/immunology , Animals , T-Lymphocytes/metabolism , T-Lymphocytes/drug effects , Neurofibromatosis 2/metabolism , Mice , Male , Female , Neurofibromin 2/metabolism , Neurofibromin 2/genetics , Cell Line, Tumor , Middle Aged , Mice, Nude , Apoptosis/drug effects , Apoptosis/physiology
6.
Front Physiol ; 15: 1394865, 2024.
Article in English | MEDLINE | ID: mdl-38831795

ABSTRACT

Introduction: Fibromyalgia (FM) is a common condition in patients with obstructive sleep apnea-hypopnea syndrome (OSAHS). This meta-analysis aimed to evaluate differences in sleep monitoring indicators between patients with OSAHS and positive FM and patients with OSAHS and negative FM and to determine the incidence of FM in patients with OSAHS. Methods: An exhaustive literature review was conducted to analyze the incidence of FM in patients with OSAHS, using online databases, including PubMed, EMBASE, Web of Science, CNKI, and Wanfang, both in English and Chinese. The quality of the included studies was assessed by two researchers using the Newcastle-Ottawa Scale scores. The acquired data were analyzed using Stata 11.0 software. Continuous variables were combined and analyzed using the weighted mean difference as the effect size. Conjoint analyses were performed using random-effects (I2 > 50%) or fixed-effect (I2 ≤ 50%) models based on I2 values. Results: Fourteen studies met the inclusion criteria. This study showed that 21% of patients with OSAHS experienced FM. Subgroup analyses were performed based on race, age, sex, body mass index, and diagnostic criteria for patients with OSAHS. These findings indicate that obese patients with OSAHS have a higher risk of FM, similar to females with OSAHS. Regarding most sleep monitoring indicators, there were no discernible differences between patients with OSAHS with positive FM and those with negative FM. However, patients with positive FM had marginally lower minimum arterial oxygen saturation levels than those with negative FM. The current literature suggests that patients with OSAHS have a high incidence of FM (21%), and FM has little effect on polysomnographic indicators of OSAHS. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024510786, identifier CRD42024510786.

7.
Phys Chem Chem Phys ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832413

ABSTRACT

As a key configuration, hard carbon (HC) is widely regarded as a promising cathode for rechargeable aluminum batteries (RABs), because of its enlarged interlayer spacing and well-developed pore structures. However, the trade-off between the pore structure, interlayer spacing and conductivity easily leads to an unsatisfactory electrochemical performance in terms of capacity and cycling stability. Hence, N-doped hard carbon (P-M) is synthesized at a relatively low temperature (700 °C) and anion intercalation associated with the energy storage process is investigated. The results demonstrate that the introduction of a N-doping agent not only expands the layer spacing and creates rich pore structures, but also boosts the conductivity. Compared with HC without N-doping, the expanded interlayer spacing in P-M can increase ion storage ability, and the rich pore channels contribute to electron transfer. Besides, compared with HC annealed at a higher temperature (900 °C), the enhanced conductivity in P-M is conducive to accelerating ion diffusion. Benefiting from these structure merits, the optimized P-M cathode delivers a high capacity (323 mA h g-1 at 500 mA g-1) and a prolonged cycle lifespan over 1000 cycles at 1 A g-1 retaining 109 mA h g-1. This work can provide a guidance for developing other high-performance hard carbon cathodes.

8.
Heliyon ; 10(7): e28546, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38689970

ABSTRACT

Objective: To explore the knowledge, attitude, and practice (KAP) toward glioma of patients with neurological symptoms or diseases. Methods: This web-based cross-sectional study was conducted at two medical centers in Henan Province between January 2023 and April 2023 and enrolled patients with neurological symptoms or diseases. The demographic characteristics of the participants and their KAP toward glioma were collected using a self-administered questionnaire. A structural equation modeling (SEM) was used to examine the relationship among KAP dimensions. Results: The study included 442 valid questionnaires. The mean knowledge, attitude, and practice scores were 7.65 ± 1.62 (possible range: 0-9), 37.98 ± 3.17 (possible range: 9-45), and 40.16 ± 4.17 (possible range: 10-50), indicating good knowledge, favorable attitude, and active practice. The SEM analysis showed that knowledge directly affected attitudes (ß = 0.89, 95%CI: 0.73-1.06, P < 0.001) but not practice (ß = -0.08, 95%CI: -0.32-0.14, P = 0.487), while attitudes directly affected practice (ß = 0.35, 95%CI: 0.21-0.48, P < 0.001). Conclusion: Patients with neurological symptoms/diseases who had heard of gliomas had good knowledge, favorable attitudes, and active practice toward glioma. Specific knowledge items that would warrant improvements were identified in the specific population of patients with neurological symptoms/diseases who had heard of glioma. Future studies should also examine the general population.

9.
Integr Zool ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698498

ABSTRACT

Scatter-hoarding rodents play important roles in plant regeneration and species coexistence in many forest ecosystems. Cache pilferage, the behavior of rodents seeking or relocating seeds cached by other individuals, is ubiquitous during the scatter-hoarding process. The effects of canopy openness on cache pilferage have received considerable attention, most of which have focused on the comparison between full canopy cover and completely open areas, such as forest gaps. However, little attention has been given to whether the subtle variation in forest canopy openness affects cache pilferage, although subtle variation in light environments exists in many forests, especially tropical and subtropical forests, where the overall canopy is large and the forest window is relatively small. Here, we directly tested these questions by simulating 400 artificial caches, each containing one seed from four selected tree species, in a subtropical forest in southwestern China. The overall canopy openness of the forest was relatively small (with a mean value of 11.1%), but subtle spatial variation still existed (ranging from 5.7% to 19.5%). Overall, caches with lower canopy openness were more likely to be pilfered and removed faster, although not all species showed the same pattern. Our study highlights that subtle variation in forest canopy openness, even in a closed primary forest, has significant effects on cache pilferage by rodents, which may influence the following seed germination and forest regeneration processes. Additionally, seedling species composition may further be altered because the canopy effects on cache pilferage are species-specific.

10.
Luminescence ; 39(5): e4762, 2024 May.
Article in English | MEDLINE | ID: mdl-38698695

ABSTRACT

Broadband near-infrared (NIR) spectroscopy has gained significant attention due to its versatile application in various fields. In the realm of NIR phosphors, Fe3+ ion is an excellent activator known for its nontoxic and harmless nature. In this study, we prepared an Fe3+-activated SrGa12O19 (SGO) NIR phosphor and analyzed its phase and luminescence properties. Upon excitation at 326 nm, the SGO:Fe3+ phosphor exhibited a broadband emission in the range 700-1000 nm, peaking at 816 nm. The optical band gap of SGO:Fe3+ was evaluated. To enhance the long-lasting phosphorescence, an oxygen vacancy-rich SGO:Fe3+ (VO-SGO:Fe3+) sample was prepared for activation. Interestingly, the increase in the oxygen-vacancy concentration indeed contributed to the activation of persistent luminescence of Fe3+ ions. The VO-SGO:Fe3+ sample has a long duration and high charge storage capacity, allowing it to perform efficiently in various applications. This work provides the foundation for further design of Cr3+-free PersL phosphors with efficient NIR PersL.


Subject(s)
Luminescence , Luminescent Agents , Oxygen , Oxygen/chemistry , Luminescent Agents/chemistry , Strontium/chemistry , Luminescent Measurements , Ferric Compounds/chemistry , Gallium/chemistry , Iron/chemistry , Spectroscopy, Near-Infrared
11.
Bioact Mater ; 37: 505-516, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38698917

ABSTRACT

Tumor metabolite regulation is intricately linked to cancer progression. Because lactate is a characteristic metabolite of the tumor microenvironment (TME), it supports tumor progression and drives immunosuppression. In this study, we presented a strategy for antitumor therapy by developing a nanogold-engineered Rhodospirillum rubrum (R.r-Au) that consumed lactate and produced hydrogen for optical biotherapy. We leveraged a cryogenic micromolding approach to construct a transdermal therapeutic cryomicroneedles (CryoMNs) patch integrated with R.r-Au to efficiently deliver living bacterial drugs. Our long-term storage studies revealed that the viability of R.r-Au in CryoMNs remained above 90%. We found that the CryoMNs patch was mechanically strong and could be inserted into mouse skin. In addition, it rapidly dissolved after administering bacterial drugs and did not produce by-products. Under laser irradiation, R.r-Au effectively enhanced electron transfer through Au NPs actuation into the photosynthetic system of R. rubrum and enlarged lactate consumption and hydrogen production, thus leading to an improved tumor immune activation. Our study demonstrated the potential of CryoMNs-R.r-Au patch as a minimally invasive in situ delivery approach for living bacterial drugs. This research opens up new avenues for nanoengineering bacteria to transform tumor metabolites into effective substances for tumor optical biotherapy.

12.
Article in English | MEDLINE | ID: mdl-38709352

ABSTRACT

The data on myocardial perfusion of the percutaneous intramyocardial septal radiofrequency ablation (PIMSRA) for obstructive hypertrophic cardiomyopathy (HOCM) are still lacking, although PIMSRA have been proved to be of great safety and efficacy. The aim of this study was to quantitatively analyze the changes in myocardial perfusion after PIMSRA using myocardial contrast echocardiography (MCE). 27 HOCM patients treated with PIMSRA were retrospectively analyzed, and their echocardiographic parameters and perfusion parameters of MCE were collected before and 12 months after PIMSRA. A reperfusion curve was used to quantify microvascular blood volume (A), microvascular flux rate (ß), and microvascular blood flow (MBF) of each segment. Then the value difference (Δ) of parameters between post- and pre-operation were calculated. Finally, the correlation between the changes in MBF and in each echocardiographic parameter was analyzed. (1) Compared with baseline, the global A, ß and MBF were significantly increased in HOCM patients after PIMSRA (all P < 0.001). The ß, MBF were increased in the interventricular septum (P < 0.001, respectively), and the A, ß, MBF were increased in the left ventricular wall (all P < 0.001). (2) Correlation analysis showed that the ΔMBF of interventricular septum was mainly negatively correlated with the maximum interventricular septum thickness (ΔIVSTmax, r=-0.670, P < 0.001), mean interventricular septum thickness (ΔIVSTmean, r=-0.690, P < 0.001), and left ventricular mass index (ΔLVMI, r=-0.774, P < 0.001), while the ΔMBF of left ventricular wall was positively correlated with left ventricular end-diastolic volume index (ΔLVEDVI, r = 0.621, P = 0.001) and stroke volume index (ΔSVI, r = 0.810, P < 0.001). Myocardial perfusion was improved at both interventricular septum and ventricular wall in HOCM patients after PIMSRA. MCE can provide a new dimension for the efficacy evaluation to PIMSRA procedure.

13.
Genet Res (Camb) ; 2024: 4285171, 2024.
Article in English | MEDLINE | ID: mdl-38715622

ABSTRACT

Bladder cancer has recently seen an alarming increase in global diagnoses, ascending as a predominant cause of cancer-related mortalities. Given this pressing scenario, there is a burgeoning need to identify effective biomarkers for both the diagnosis and therapeutic guidance of bladder cancer. This study focuses on evaluating the potential of high-definition computed tomography (CT) imagery coupled with RNA-sequencing analysis to accurately predict bladder tumor stages, utilizing deep residual networks. Data for this study, including CT images and RNA-Seq datasets for 82 high-grade bladder cancer patients, were sourced from the TCIA and TCGA databases. We employed Cox and lasso regression analyses to determine radiomics and gene signatures, leading to the identification of a three-factor radiomics signature and a four-gene signature in our bladder cancer cohort. ROC curve analyses underscored the strong predictive capacities of both these signatures. Furthermore, we formulated a nomogram integrating clinical features, radiomics, and gene signatures. This nomogram's AUC scores stood at 0.870, 0.873, and 0.971 for 1-year, 3-year, and 5-year predictions, respectively. Our model, leveraging radiomics and gene signatures, presents significant promise for enhancing diagnostic precision in bladder cancer prognosis, advocating for its clinical adoption.


Subject(s)
Neoplasm Staging , Neural Networks, Computer , Tomography, X-Ray Computed , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/diagnostic imaging , Urinary Bladder Neoplasms/pathology , Humans , Tomography, X-Ray Computed/methods , Male , Female , RNA-Seq/methods , Aged , Nomograms , Middle Aged , Biomarkers, Tumor/genetics , ROC Curve , Prognosis , Transcriptome , Radiomics
14.
Food Res Int ; 186: 114367, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729727

ABSTRACT

Dry-cured hams contain abundant bioactive peptides with significant potential for the development of functional foods. However, the limited bioavailability of food-derived bioactive peptides has hindered their utilization in health food development. Moreover, there is insufficient regulatory information regarding bioactive peptides and related products globally. This review summarizes diverse bioactive peptides derived from dry-cured ham and by-products originating from various countries and regions. The bioactivity, preparation techniques, bioavailability, and metabolic stability of these bioactive peptides are described, as well as the legal and regulatory frameworks in various countries. The primary objectives of this review are to dig deeper into the functionality of dry-cured ham and provide theoretical support for the commercialization of bioactive peptides from food sources, especially the dry-cured ham.


Subject(s)
Food Handling , Meat Products , Peptides , Animals , Meat Products/analysis , Food Handling/methods , Biological Availability , Swine , Humans , Functional Food , Protein Stability
15.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791502

ABSTRACT

Wound infection is one of the most important factors affecting wound healing, so its effective control is critical to promote the process of wound healing. However, with the increasing prevalence of multi-drug-resistant (MDR) bacterial strains, the prevention and treatment of wound infections are now more challenging, imposing heavy medical and financial burdens on patients. Furthermore, the diminishing effectiveness of conventional antimicrobials and the declining research on new antibiotics necessitate the urgent exploration of alternative treatments for wound infections. Recently, phage therapy has been revitalized as a promising strategy to address the challenges posed by bacterial infections in the era of antibiotic resistance. The use of phage therapy in treating infectious diseases has demonstrated positive results. This review provides an overview of the mechanisms, characteristics, and delivery methods of phage therapy for combating pathogenic bacteria. Then, we focus on the clinical application of various phage therapies in managing refractory wound infections, such as diabetic foot infections, as well as traumatic, surgical, and burn wound infections. Additionally, an analysis of the potential obstacles and challenges of phage therapy in clinical practice is presented, along with corresponding strategies for addressing these issues. This review serves to enhance our understanding of phage therapy and provides innovative avenues for addressing refractory infections in wound healing.


Subject(s)
Phage Therapy , Wound Infection , Phage Therapy/methods , Humans , Wound Infection/therapy , Wound Infection/microbiology , Wound Healing , Bacterial Infections/therapy , Bacterial Infections/microbiology , Bacteriophages/physiology , Animals , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial
16.
Materials (Basel) ; 17(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38730779

ABSTRACT

Over the last few decades, there has been a growing discourse surrounding environmental and health issues stemming from drinking water and the discharge of effluents into the environment. The rapid advancement of various sewage treatment methodologies has prompted a thorough exploration of promising materials to capitalize on their benefits. Metal-organic frameworks (MOFs), as porous materials, have garnered considerable attention from researchers in recent years. These materials boast exceptional properties: unparalleled porosity, expansive specific surface areas, unique electronic characteristics including semi-conductivity, and a versatile affinity for organic molecules. These attributes have fueled a spike in research activity. This paper reviews the current MOF-based wastewater removal technologies, including separation, catalysis, and related pollutant monitoring methods, and briefly introduces the basic mechanism of some methods. The scale production problems faced by MOF in water treatment applications are evaluated, and two pioneering methods for MOF mass production are highlighted. In closing, we propose targeted recommendations and future perspectives to navigate the challenges of MOF implementation in water purification, enhancing the efficiency of material synthesis for environmental stewardship.

17.
Materials (Basel) ; 17(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38730890

ABSTRACT

A modified 3D re-entrant honeycomb is designed and fabricated utilizing Laser Cladding Deposition (LCD) technology, the mechanical properties of which are systematically investigated by experimental and finite element (FE) methods. Firstly, the influences of honeycomb angle on localized deformation and the response of force are studied by an experiment. Experimental results reveal that the honeycomb angles have a significant effect on deformation and force. Secondly, a series of numerical studies are conducted to analyze stress characteristics and energy absorption under different angles (α) and velocities (v). It is evident that two variables play an important role in stress and energy. Thirdly, response surface methodology (RSM) and the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) are implemented with high precision to solve multi-objective optimization. Finally, the final compromise solution is determined based on the fitness function, with an angle of 49.23° and an impact velocity of 16.40 m/s. Through simulation verification, the errors of energy absorption (EA) and peak crush stress (PCS) are 9.26% and 0.4%, respectively. The findings of this study offer valuable design guidance for selecting the optimal design parameters under the same mass conditions to effectively enhance the performance of the honeycomb.

18.
Materials (Basel) ; 17(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38730933

ABSTRACT

High-nickel ternary materials are currently the most promising lithium battery cathode materials due to their development and application potential. Nevertheless, these materials encounter challenges like cation mixing, lattice oxygen loss, interfacial reactions, and microcracks. These issues are exacerbated at high voltages, compromising their cyclic stability and safety. In this study, we successfully prepared Nb5+-doped high-nickel ternary cathode materials via a high-temperature solid-phase method. We investigated the impact of Nb5+ doping on the microstructure and electrochemical properties of LiNi0.88Co0.05Mn0.07O2 ternary cathode materials by varying the amount of Nb2O5 added. The experimental results suggest that Nb5+ doping does not alter the crystal structure but modifies the particle morphology, yielding radially distributed, elongated, rod-like structures. This morphology effectively mitigates the anisotropic volume changes during cycling, thereby bolstering the material's cyclic stability. The material exhibits a discharge capacity of 224.4 mAh g-1 at 0.1C and 200.3 mAh g-1 at 1C, within a voltage range of 2.7 V-4.5 V. Following 100 cycles at 1C, the capacity retention rate maintains a high level of 92.9%, highlighting the material's remarkable capacity retention and cyclic stability under high-voltage conditions. The enhancement of cyclic stability is primarily due to the synergistic effects caused by Nb5+ doping. Nb5+ modifies the particle morphology, thereby mitigating the formation of microcracks. The formation of high-energy Nb-O bonds prevents oxygen precipitation at high voltages, minimizes the irreversibility of the H2-H3 phase transition, and thereby enhances the stability of the composite material at high voltages.

19.
Animals (Basel) ; 14(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38731324

ABSTRACT

Bartonella is an intracellular parasitic zoonotic pathogen that can infect animals and cause a variety of human diseases. This study investigates Bartonella prevalence in small mammals in Yunnan Province, China, focusing on tissue tropism. A total of 333 small mammals were sampled from thirteen species, three orders, four families, and four genera in Heqing and Gongshan Counties. Conventional PCR and real-time quantitative PCR (qPCR) were utilized for detection and quantification, followed by bioinformatic analysis of obtained DNA sequences. Results show a 31.5% detection rate, varying across species. Notably, Apodemus chevrieri, Eothenomys eleusis, Niviventer fulvescens, Rattus tanezumi, Episoriculus leucops, Anourosorex squamipes, and Ochotona Thibetana exhibited infection rates of 44.4%, 27.7%, 100.0%, 6.3%, 60.0%, 23.5%, and 22.2%, respectively. Genetic analysis identified thirty, ten, and five strains based on ssrA, rpoB, and gltA genes, with nucleotide identities ranging from 92.1% to 100.0%. Bartonella strains were assigned to B. grahamii, B. rochalimae, B. sendai, B. koshimizu, B. phoceensis, B. taylorii, and a new species identified in Episoriculus leucops (GS136). Analysis of the different tissues naturally infected by Bartonella species revealed varied copy numbers across different tissues, with the highest load in spleen tissue. These findings underscore Bartonella's diverse species and host range in Yunnan Province, highlighting the presence of extensive tissue tropism in Bartonella species naturally infecting small mammalian tissues.

20.
Heliyon ; 10(9): e30008, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38737279

ABSTRACT

Background: Alterations in the static and dynamic characteristics of spontaneous brain activity have been extensively studied to investigate functional brain changes in migraine without aura (MwoA). However, alterations in concordance among the dynamics of spontaneous brain activity in MwoA remain largely unknown. This study aimed to determine the possibilities of diagnosis based on the concordance indices. Methods: Resting-state functional MRI scans were performed on 32 patients with MwoA and 33 matched healthy controls (HCs) in the first cohort, as well as 36 patients with MwoA and 32 HCs in the validation cohort. The dynamic indices including fractional amplitude of low-frequency fluctuation, regional homogeneity, voxel-mirrored homotopic connectivity, degree centrality and global signal connectivity were analyzed. We calculated the concordance of grey matter volume-wise (across voxels) and voxel-wise (across time windows) to quantify the degree of integration among different functional levels represented by these dynamic indices. Subsequently, the voxel-wise concordance alterations were analyzed as features for multi-voxel pattern analysis (MVPA) utilizing the support vector machine. Results: Compared with that of HCs, patients with MwoA had lower whole-grey matter volume-wise concordance, and the mean value of volume-wise concordance was negatively correlated with the frequency of migraine attacks. The MVPA results revealed that the most discriminative brain regions were the right thalamus, right cerebellar Crus II, left insula, left precentral gyrus, right cuneus, and left inferior occipital gyrus. Conclusions: Concordance alterations in the dynamics of spontaneous brain activity in brain regions could be an important feature in the identification of patients with MwoA.

SELECTION OF CITATIONS
SEARCH DETAIL
...