Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Anticancer Drugs ; 35(2): 195-198, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38018809

ABSTRACT

Cetuximab [the epidermal growth factor receptor (EGFR)-targeting mAb] improves clinical outcomes when added to standard chemotherapy used in the treatment of metastatic colorectal cancer. Patients with hotspot mutations in Kirsten rat sarcoma viral oncogene ( KRAS ) mutation in exon 2 were not recommended to be treated with cetuximab. However, there is still a lack of clinical data for those unreported non-hotspot KRAS mutations in exon 2 and their response to cetuximab. In this study, we reported a 35-year-old woman who was diagnosed with stage IVA CRC with liver metastases. An exceptionally uncommon KRASP34R mutation in KRAS exon 2 was detected in tumor specimens by next-generation sequencing. This patient obtained limited benefit from first-line chemotherapy and did not respond to cetuximab in the second-line course. In the third-line course, the patient also did not respond to the combination treatment of furaquitinib and cindilimab. The patient died 8 months after treatment initiation. In this study, we found amplification of the rare oncogenic KRASP34R was not only associated with an aggressive phenotype, but also supported cancer resistance to cetuximab, chemotherapy, and immunotherapy.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Colorectal Neoplasms , Rectal Neoplasms , Female , Humans , Adult , Cetuximab/therapeutic use , Antineoplastic Agents/therapeutic use , Proto-Oncogene Proteins p21(ras)/genetics , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Colonic Neoplasms/drug therapy , Rectal Neoplasms/drug therapy , Mutation
2.
IEEE Trans Biomed Eng ; 70(12): 3490-3500, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37379179

ABSTRACT

Intravascular optical coherence tomography (IV-OCT) is crucial for evaluating lumen dimensions and guiding interventional procedures. However, traditional catheter-based IV-OCT faces challenges in achieving precise and full-field 360° imaging in tortuous vessels. Current IV-OCT catheters that employ proximal actuators and torque coils are susceptible to non-uniform rotational distortion (NURD) in tortuous vessels, while distal micromotor-driven catheters struggle with complete 360° imaging due to wiring artifacts. In this study, we developed a miniature optical scanning probe with an integrated piezoelectric-driven fiber optic slip ring (FOSR) to facilitate smooth navigation and precise imaging within tortuous vessels. The FOSR features a coil spring-wrapped optical lens serving as a rotor, enabling efficient 360° optical scanning. The structurally-and-functionally-integrated design significantly streamlines the probe (with a diameter of 0.85 mm and a length of 7 mm) while maintaining an excellent rotational speed of 10,000 rpm. High-precision 3D printing technology ensures accurate optical alignment of the fiber and lens inside the FOSR, with a maximum insertion loss variation of 2.67 dB during probe rotation. Finally, a vascular model demonstrated smooth probe insertion into the carotid artery, and imaging of oak leaf, metal rod phantoms, and ex vivo porcine vessels verified its capabilities for precise optical scanning, comprehensive 360° imaging, and artifact elimination. The FOSR probe exhibits small size, rapid rotation, and optical precision scanning, rendering it exceptionally promising for cutting-edge intravascular optical imaging techniques.


Subject(s)
Coronary Vessels , Tomography, Optical Coherence , Animals , Swine , Tomography, Optical Coherence/methods , Catheters , Phantoms, Imaging , Carotid Arteries
3.
Micromachines (Basel) ; 14(3)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36984924

ABSTRACT

Piezo-driven resonant fiber optic scanners are gaining more and more attention due to their simple structure, weak electromagnetic radiation, and non-friction loss. Conventional piezo-driven resonant fiber optic scanners typically use quadrature piezoelectric tubes (piezo tubes) operating in 31-mode with high drive voltage and low excitation efficiency. In order to solve the abovementioned problem, a resonant fiber scanner driven by co-fired multilayer piezoelectric ceramics (CMPCs) is proposed in which four CMPCs drive a cantilevered fiber optic in the first-order bending mode to achieve efficient and fast space-filling scanning. In this paper, the cantilever beam vibration model with base displacement excitation was derived to provide a theoretical basis for the design of the fiber optic scanner. The finite element method was used to guide the dynamic design of the scanner. Finally, the dynamics characteristics and scanning trajectory of the prepared scanner prototype were tested and compared with the theoretical and simulation calculation results. Experimental results showed that the scanner can achieve three types of space-filling scanning: spiral, Lissajous, and propeller. Compared with the structure using piezo tubes, the designed scanner achieved the same scanning range with smaller axial dimensions, lower drive voltage, and higher efficiency. The scanner can achieve a free end displacement of 10 mm in both horizontal and vertical directions under a sinusoidal excitation signal of 50 Vp-p and 200 Hz. The theoretical, simulation and experimental results validate the feasibility of the proposed scanner structure and provide new ideas for the design of resonant fiber optic scanners.

4.
Rev Sci Instrum ; 93(10): 105003, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36319375

ABSTRACT

Polymer-based piezoelectric motors have excellent properties, such as lightweight and corrosion resistance. In addition, 3D printing and customized additive manufacturing of polymers provide new opportunities for the development of piezoelectric motors with complex or special structures. In this paper, a 3D printed polymer-based sandwich-type piezoelectric motor operating in a single longitudinal mode is developed. A vibration decomposition model of the motor and an analytical model considering polymer viscoelasticity are established to analyze the dynamic characteristics and to determine the geometric structure of the motor. To increase the coefficient of friction, a polymer surface texture is utilized on the contacts. The experimental results show that the friction coefficient of the contact tip with surface texture is about 0.16, which increased by 45.5% compared to a smooth surface. The resonance frequency is 28.648 kHz, and the maximum no-load speed under 300 Vp-p is 54 r/min. Our study shows the promise of polymer-based materials in the development of the piezoelectric motor.

5.
Comput Biol Med ; 149: 105946, 2022 10.
Article in English | MEDLINE | ID: mdl-36030721

ABSTRACT

The physician burnout, poor ergonomics are hardly conducive to the sustainability and high quality of colonoscopy. In order to reduce doctors' workload and improve patients' experiences during colonoscopy, this paper proposes a multistage adaptive control approach based on image contour data to guide the autonomous navigation of endoscopes. First, a fast image preprocessing and contour extraction algorithms are designed. Second, different processing algorithms are developed according to the different contour information that can be clearly extracted to compute the endoscope control parameters. Third, when a clear contour cannot be extracted, a triple control method inspired by the turning of a novice car driver is devised to help the endoscope capture clear contours. The proposed multistage adaptive control approach is tested in an intestinal model over a variety of curved configurations and verified on the actual colonoscopy image. The results reveal the success of the strategy in both straight sections of this intestinal model and in tightly curved sections as small as 6 cm in radius of curvature. In the experiment, processing time for a single image is 20-25 ms and the accuracy of judging steering based on intestinal model pictures is 96.7%. Additionally, the average velocity reaches 3.04 cm/s in straight sections and 2.49 cm/s in curved sections respectively.


Subject(s)
Algorithms , Endoscopes , Colonoscopy , Humans , Image Processing, Computer-Assisted/methods
6.
Article in English | MEDLINE | ID: mdl-35380959

ABSTRACT

In-plane bending traveling wave ultrasonic motors (USM), which are compact in structure and flexible in design, have been widely applied in biological engineering, optical engineering, and aerospace engineering. However, the high driving voltage and complicated driving circuit of this kind of USM restrict their further miniaturization and electromechanical integration in these applications and bring some potential safety hazards. To solve this problem, a low-voltage-driving traveling wave USM incorporating cofired multilayer piezoelectric ceramics was proposed in this work. Four cofired piezoelectric ceramics were strategically designed to excite two orthogonal third-order in-plane bending modes with the same frequency of the USM. The principles of traveling wave synthesis and low-voltage-driving of the USM were deduced, and the stator dynamic design and transient dynamic simulation were carried out by finite-element method. The microproperties of cofired piezoelectric multilayer ceramics, the vibration characteristics of the stator, and the mechanical output performance of the USM were tested by experiments. The results indicated that the motor can work as low as 5 [Formula: see text]. A long stroke with a maximum forward and reverse rotational speeds of 187.7 and 176.6 r/min were obtained, respectively, and a maximum stalling torque of 4.8 mN · m at 47.3 kHz under 15 [Formula: see text] was achieved. The results showed that the proposed USM is small, low in driving voltage, and high in torque output, which has promising applications in aerospace, biomedicine, and other fields that require a lightweight and integration of driving devices.


Subject(s)
Ultrasonics , Vibration , Ceramics , Equipment Design , Miniaturization
7.
Article in English | MEDLINE | ID: mdl-35050853

ABSTRACT

Electronic scanning of two-dimensional (2-D) arrays and mechanical or freehand scanning of one-dimensional (1-D) arrays have been mostly utilized for conventional three-dimensional (3-D) ultrasound (US) imaging. However, the development of 2-D arrays and the hardware systems are complicated and expensive, while freehand systems with positioning sensors and mechanical systems are mostly bulky. This article represents a novel scanning strategy for achieving high-quality 3-D US imaging with a high-frequency single-element transducer. A 42-MHz US transducer with a compact structure was designed and fabricated, which was excited in the 2-D vibration by a tubular piezoelectric actuator. A dedicated imaging system was set up and both B-mode and 3-D US imaging of a custom wire phantom have been carried out to evaluate the performance of the proposed transducer. Compared to the results obtained with the motorized linear translation stage, the reconstructed images obtained by the proposed resonance scanning method are accurate, demonstrating the feasibility of 3-D US imaging with a vibrating single-element US transducer.


Subject(s)
Imaging, Three-Dimensional , Transducers , Imaging, Three-Dimensional/methods , Phantoms, Imaging , Ultrasonography/methods
8.
Article in English | MEDLINE | ID: mdl-34860650

ABSTRACT

Existing 3-D intravascular ultrasound (IVUS) systems that combine two electromagnetic (EM) motors to drive catheters are bulky and require considerable efforts to eliminate EM interference (EMI). Here, we propose a new scanning method to realize 3-D IVUS imaging using a helical ultrasonic motor to overcome the aforementioned issues. The ultrasonic motor with compact dimensions (7-mm outer diameter and 30-mm longitudinal length), lightweight (20.5 g), and free of EMI exhibits a great application potential in mobile imaging devices. In particular, it can simultaneously perform rotary and linear motions, facilitating precise 3-D scanning of an imaging catheter. Experimental results show that the signal-to-noise ratio (SNR) of raw images obtained using the ultrasonic motor is 5.3 dB better than that of an EM motor. Moreover, the proposed imaging device exhibits the maximum rotary speed of 12.3 r/s and the positioning accuracy of 2.6 [Formula: see text] at a driving voltage of 240 Vp-p. The 3-D wire phantom imaging and 3-D tube phantom imaging are performed to evaluate the performance of the imaging device. Finally, the in vitro imaging of a porcine coronary artery demonstrates that the layered architecture of the vessel can be precisely identified while significantly increasing the SNR of the raw images.


Subject(s)
Coronary Vessels , Ultrasonics , Animals , Catheters , Coronary Vessels/diagnostic imaging , Imaging, Three-Dimensional , Phantoms, Imaging , Swine , Ultrasonography , Ultrasonography, Interventional
9.
Biomed Opt Express ; 12(4): 1934-1946, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33996208

ABSTRACT

Myocardial infarctions are most often caused by the so-called vulnerable plaques, usually featured as non-obstructive lesions with a lipid-rich necrotic core, thin-cap fibroatheroma, and large plaque size. The identification and quantification of these characteristics are the keys to evaluate plaque vulnerability. However, single modality intravascular methods, such as intravascular ultrasound, optical coherence tomography and photoacoustic, can hardly achieve all the comprehensive information to satisfy clinical needs. In this paper, for the first time, we developed a novel multi-spectral intravascular tri-modality (MS-IVTM) imaging system, which can perform 360° continuous rotation and pull-backing with a 0.9-mm miniature catheter and achieve simultaneous acquisition of both morphological characteristics and pathological compositions. Intravascular tri-modality imaging demonstrates the ability of our MS-IVTM system to provide macroscopic and microscopic structural information of the vessel wall, with identity and quantification of lipids with multi-wavelength excitation. This study offers clinicians and researchers a novel imaging tool to facilitate the accurate diagnosis of vulnerable atherosclerotic plaques. It also has the potential of clinical translations to help better identify and evaluate high-risk plaques during coronary interventions.

SELECTION OF CITATIONS
SEARCH DETAIL
...