Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res A ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38606694

ABSTRACT

This study aimed to evaluate the properties of radiation cross-linked collagen scaffold (RCS) and its efficacy for alveolar ridge preservation (ARP). RCS was prepared from collagen dispersion by electron beam irradiation and freeze-drying. The microstructure, swelling ratio, area alteration and mechanical properties of RCS were characterized. Fifty-four New Zealand rabbits performing incisor extraction on maxilla and mandible were randomly assigned into positive, sham operation or treatment groups. Micro-computed tomography (micro-CT) scans, performed after 1, 4, and 12 weeks of surgery, were to assess changes in ridge height at buccal and palatal side, in ridge width and in micromorphological parameters. Histological analysis accessed socket microarchitecture. The results showed that RCS had stable mechanical properties and morphologic features that provided a reliable physical support for ARP. Dimensional changes in treatment group revealed significantly greater vertical height at buccal (5.32 [3.37, 7.26] mm, p < .0001) and palatal (4.37 [2.66, 6.09] mm, p < .0001) side, and horizontal width at the maxilla (0.16 [0.04, 0.28] mm, p < .01) and mandible (0.33 [0.11, 0.54] mm, p < .01) than those in sham operation group after 12 weeks. The treatment group had advantage than positive group in vertical height preservation, quantitatively. The order and density of bone trabeculae were improved in treatment group. These findings indicated that RCS had the potential to serve as an effective scaffold for ARP.

2.
J Diabetes Res ; 2022: 7680513, 2022.
Article in English | MEDLINE | ID: mdl-35308095

ABSTRACT

To explore the relevant RNA-binding proteins (RBPs) and alternative splicing events (ASEs) in diabetic retinopathy (DR). We devised a comprehensive work to integrate analyses of the differentially expressed genes, including differential RBPs, and variable splicing characteristics related to DR in human retinal endothelial cells induced by low glucose and high glucose in dataset GSE117238. A total of 2320 differentially expressed genes (DEGs) were identified, including 1228 upregulated genes and 1092 downregulated genes. Further analysis screened out 232 RBP genes, and 42 AS genes overlapped DEGs. We selected high expression and consistency six RBP genes (FUS, HNRNPA2B1, CANX, EIF1, CALR, and POLR2A) for coexpression analysis. Through analysis, we found eight RASGs (MDM2, GOLGA2P7, NFE2L1, KDM4A, FAM111A, CIRBP, IDH1, and MCM7) that could be regulated by RBP. The coexpression network was conducted to further elucidate the regulatory and interaction relationship between RBPs and AS. Apoptotic progress, protein phosphorylation, and NF-kappaB cascade revealed by the functional enrichment analysis of RASGs regulated by RBPs were closely related to diabetic retinopathy. Furthermore, the expression of differentially expressed RBPs was validated by qRT-PCR in mouse retinal microvascular endothelial cells and retinas from the streptozotocin mouse model. The results showed that Fus, Hnrnpa2b1, Canx, Calr, and Polr2a were remarkedly difference in high-glucose-treated retinal microvascular endothelial cells and Fus, Hnrnpa2b1, Canx, and Calr were remarkedly difference in retinas from streptozotocin-induced diabetic mice compared to control. The regulatory network between identified RBPs and RASGs suggests the presence of several signaling pathways possibly involved in the pathogenesis of DR. The verified RBPs should be further addressed by future studies investigating associations between RBPs and the downstream of AS, as they could serve as potential biomarkers and targets for DR.


Subject(s)
Alternative Splicing/physiology , Blood Glucose/metabolism , Endothelial Cells/drug effects , RNA-Binding Proteins/metabolism , Retina/drug effects , Alternative Splicing/drug effects , Animals , Disease Models, Animal , Endothelial Cells/metabolism , Mice , Mice, Inbred NOD , RNA-Binding Proteins/drug effects , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/statistics & numerical data , Retina/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...