Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 13: 993862, 2022.
Article in English | MEDLINE | ID: mdl-36324680

ABSTRACT

JAK/STAT signaling pathways are closely associated with multiple biological processes involved in cell proliferation, apoptosis, inflammation, differentiation, immune response, and epigenetics. Abnormal activation of the STAT pathway can contribute to disease progressions under various conditions. Moreover, tofacitinib and baricitinib as the JAK/STAT inhibitors have been recently approved by the FDA for rheumatology disease treatment. Therefore, influences on the STAT signaling pathway have potential and perspective approaches for diverse diseases. Chinese herbs in traditional Chinese medicine (TCM), which are widespread throughout China, are the gold resources of China and have been extensively used for treating multiple diseases for thousands of years. However, Chinese herbs and herb formulas are characterized by complicated components, resulting in various targets and pathways in treating diseases, which limits their approval and applications. With the development of chemistry and pharmacology, active ingredients of TCM and herbs and underlying mechanisms have been further identified and confirmed by pharmacists and chemists, which improved, to some extent, awkward limitations, approval, and applications regarding TCM and herbs. In this review, we summarized various herbs, herb formulas, natural compounds, and phytochemicals isolated from herbs that have the potential for regulating multiple biological processes via modulation of the JAK/STAT signaling pathway based on the published work. Our study will provide support for revealing TCM, their active compounds that treat diseases, and the underlying mechanism, further improving the rapid spread of TCM to the world.

2.
Molecules ; 28(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36615213

ABSTRACT

Huangqin is the dried root of Scutellaria baicalensis Georgi, which has been widely utilized for heat-clearing (Qingre) and dewetting (Zaoshi), heat-killed (Xiehuo) and detoxifying (Jiedu) in the concept of Traditional Chinese Medicine and is used for treating inflammation and cancer in clinical formulas. Neobaicalein (NEO) is of flavonoid isolated from Huangqin and has been reported to possess prominent anti-inflammatory effects in published work. Th17/Treg balance shift to Th17 cells is an essential reason for autoimmune inflammatory diseases. However, the role NEO plays in Th17 and Treg and the underlying mechanism has not been elucidated yet. Network pharmacology-based study revealed that NEO predominantly regulated IL-17 signaling pathway. Moreover, our result shown that NEO (3-30 µmol/L) down-regulated Th17 differentiation and cellular supernatant and intracellular IL-17A level and tumor necrosis factor α production in a concentration-dependent manner. The further mechanism research revealed that NEO also specifically inhibited phosphorylation of STAT3(Tyr725) and STAT4 (Y693) without influence on activation of STAT5 and STAT6 in splenocytes. Immunofluorescence results illuminated that NEO effectively blocked STAT3 translocated into nucleus. Interestingly, NEO at appreciated dose could only inhibit Th17 cell differentiation and have no effect on Treg differentiation. The present study revealed that NEO effectively inhibited Th17 cell differentiation through specifically blocking the activation of STAT3 signaling without inactivation of STAT5 and STAT6. Additional inhibitory effect on activation of STAT4 by NEO also suggested the potential for antagonism against Th1 differentiation. All work suggested that NEO may be a potential candidate for immunoregulation and treating autoimmune inflammatory diseases through inhibiting immune cell viability and T cell differentiation.


Subject(s)
Autoimmune Diseases , Th17 Cells , Humans , STAT5 Transcription Factor/metabolism , T-Lymphocytes, Regulatory , Cell Differentiation , Signal Transduction , STAT3 Transcription Factor/metabolism , Autoimmune Diseases/metabolism
3.
Sci Rep ; 10(1): 14182, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32843671

ABSTRACT

Sinomenium acutum stem is a popular traditional Chinese medicine used to treat bone and joint diseases. Sinomenine is considered the only chemical marker for the quality control of S. acutum stem in mainstream pharmacopeias. However, higenamine in S. acutum stem is a novel stimulant that was banned by the World Anti-Doping Agency in 2017. Therefore, enhancing the quality and safety control of S. acutum stem to avoid potential safety risks is of utmost importance. In this study, a fast, sensitive, precise, and accurate method for the simultaneous determination of 11 alkaloids in S. acutum stem by ultrahigh-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC-QQQ-MS/MS) was established. This method successfully analyzed thirty-five batches of S. acutum stem samples. The average contents of sinomenine, magnoflorine, coclaurine, acutumine, higenamine, sinoacutine, palmatine, magnocurarine, columbamine, 8-oxypalmatine, and jatrorrhizine were 24.9 mg/g, 6.35 mg/g, 435 µg/g, 435 µg/g, 288 µg/g, 44.4 µg/g, 22.5 µg/g, 21.1 µg/g, 15.8 µg/g, 9.30 µg/g, and 8.75 µg/g, respectively. Multivariate analysis, including principal component analysis (PCA), orthogonal partial least square method-discriminant analysis (OPLS-DA), and hierarchical cluster analysis (HCA), were performed to characterize the importance and differences among these alkaloids in S. acutum stem samples. As a result, sinomenine, magnoflorine, coclaurine, acutumine, and higenamine are proposed as chemical markers for quality control. Higenamine and coclaurine are also recommended as chemical markers for safety control. This report provides five alkaloids that can be used as chemical markers for improving the quality and safety control of S. acutum stem. It also alerts athletes to avoid the risks associated with consuming S. acutum stem.


Subject(s)
Alkaloids/analysis , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Plant Stems/chemistry , Sinomenium/chemistry , Tandem Mass Spectrometry/methods , Alkaloids/toxicity , Aporphines/analysis , Aporphines/toxicity , Cluster Analysis , Isoquinolines/analysis , Isoquinolines/toxicity , Least-Squares Analysis , Morphinans/analysis , Morphinans/toxicity , Plant Extracts/chemistry , Principal Component Analysis , Solvents , Spiro Compounds/analysis , Spiro Compounds/toxicity , Tetrahydroisoquinolines/analysis , Tetrahydroisoquinolines/toxicity
4.
Phytomedicine ; 67: 153155, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31901890

ABSTRACT

BACKGROUND: Astragali Radix (AR) is a well-known Chinese herbal medicine. The quality of AR can be affected by many factors such as species, growth mode and production area, but there are still no chemical markers to distinguish it. PURPOSE: To explore chemical markers for improving the quality assessment of AR and discover chemical markers for identifying species, growth mode and production area of AR. METHODS: A highly sensitive, efficient and accurate method based on ultra-high performance liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC-QQQ-MS/MS) for simultaneous quantitative determination of 14 major chemical components (five flavonoids and nine triterpene saponins) in 94 batches of AR from China, Republic of Korea and Germany was developed for the first time. To explore chemical markers and assess changes in the contents of 14 compounds in the 94 batches of AR samples from different regions, hierarchical clustering analysis (HCA) and principal component analysis (PCA) were performed. RESULTS: Astragaloside III was not only an important chemical marker for distinguishing two species of AR, i.e.: Astragalus mongholicus and A. membranaceus, but also a potential chemical marker for the classification of cultivated and semi-wild AR. In addition, in the batches of cultivated AR, the content of isoastragaloside II and cyclocephaloside II were greater in batches from the region of Shaanxi Province than that of other Provinces in China, but the content of calycosin-7-O-ß-D-glucoside and astragaloside IV, which are the quality control markers of AR required by the Chinese Pharmacopoeia, were higher than that of other Provinces in China. In addition, the content of calycosin-7-O-ß-D-glucoside, ononin, calycosin and astragaloside I could be used to identify samples of AR collected from China, Republic of Korea and Germany. CONCLUSION: This UHPLC-QQQ-MS/MS method could be applied to the quantitative evaluation of AR and could be an important and meaningful reference to develop chemical markers for quality control of AR.


Subject(s)
Astragalus propinquus/chemistry , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/analysis , Tandem Mass Spectrometry/methods , Astragalus propinquus/growth & development , China , Flavonoids/analysis , Germany , Principal Component Analysis , Quality Control , Reproducibility of Results , Republic of Korea , Saponins/analysis , Triterpenes/analysis
5.
Article in English | MEDLINE | ID: mdl-35198030

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disease. The Hugan Qingzhi formula (HGQZ) has been proven effective in treating NAFLD through clinical and pharmacological mechanism studies. A screening study of the chemical components was carried out to better control the quality of this formula. Current research has combined biological activity assessment with chemical analysis to screen and identify the bioactive compounds in HGQZ for use as potential quality markers (Q-markers) to control the quality of this herbal product. The HGQZ extracted by three different solvents was evaluated in a free fatty acid-induced hepatic steatosis LO2 cell model. Simultaneously, the twelve major chemical constituents of these extracts were quantitatively measured by ultrahigh-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QQQ-MS/MS). Extraction with 50% ethanol showed the most potent lipid-lowering effect in steatosis LO2 cells and the highest extraction rate of major chemical constituents. Correlation analysis was used to establish the relationship between the biological activities and chemical characteristics of these extracts. The results showed that the contents of typhaneoside, hyperoside, isoquercitrin, isorhamnetin-3-O-neohesperidoside, notoginsenoside R1, and alisol B 23-acetate were positively correlated to the lipid-lowering effect. The subsequent bioassay confirmed that typhaneoside, isoquercitrin, and alisol B 23-acetate played the role of reducing the lipid effect. In conclusion, 50% of ethanol extraction produced the most active extract of HGQZ. Typhaneoside, isoquercitrin, and alisol B 23-acetate could be considered potential Q-markers for the quality control of HGQZ.

6.
Chin J Nat Med ; 15(9): 703-709, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28991532

ABSTRACT

Medicinal almonds have been used for over 2 000 years and its clinical efficacy includes relieving cough and asthma. The domestic market in China is flooded with different kinds of dried almonds, such as bitter almond (Armeniacae Semen Amarum, AAS), sweet almond (Armeniacae Semen Dulce, ADS), salted almond (Armeniacae Semen Salsa, ASS), and their sulfur-fumigating products (Armeniacae Semen Sulphur Fumabat, ASFS). Wide varieties of almonds may lead to uncertain efficacy, aberrant quality, and even increased safety risk. However, the authentication method for medicinal almonds has not been reported, although imposters may lead to ineffective medical response. In the present study, Fourier transform infrared spectroscopy (FTIR) and the 2-dimensional infrared (2D-IR) spectroscopy were used to identify different almonds, which were extracted with different solvents including water, methanol, ethanol, chloroform and ethyl acetate, respectively. A new simple FTIR method was developed in the present study. According to the gradient solvent polarity, a new 2D IR method was first developed, and the commodities of almonds in China were analyzed by using the FTIR spectroscopy supported by hierarchical clustering of characteristic peaks. Moreover, 5-hydroxymethyl-2-furfural could be used as a detection index and control target in the quality control of medicinal almonds.


Subject(s)
Drugs, Chinese Herbal/chemistry , Prunus dulcis/chemistry , Spectroscopy, Fourier Transform Infrared/methods , China , Drugs, Chinese Herbal/isolation & purification , Quality Control
7.
Sci Rep ; 7(1): 13023, 2017 10 12.
Article in English | MEDLINE | ID: mdl-29026200

ABSTRACT

Aconiti Lateralis Radix Praeparata (Fuzi) is obtained from processed daughter roots of Aconitum carmichaeli, a toxic plant with a high medical value well known in Chinese medicine. In addition to the known toxic alkaloids (aconitine, mesaconitine, and hypaconitine) and bioactive alkaloids (benzoylaconine, benzoylmesaconine, and benzoylhypaconine), three rarely found alkaloids have been previously reported in Fuzi, i.e., yunaconitine, 8-deacetyl-yunaconitine, and crassicauline A, and they were reported in recent years to cause potential risk to patients who took Fuzi or related products. To better control the quality of this herb and its related products and ensure safe use, developing a method to simultaneously determine these 9 alkaloids is important. In this research, sensitive and accurate ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry method was established and used to examine 51 Fuzi and 27 Fuzi-containing products. Unexpectedly, 8-deacetyl-yunaconitine was detected in 17 Fuzi samples (33.3%) and 3 Fuzi-containing products (11.1%); yunaconitine in 10 Fuzi samples (19.6%) and 10 Fuzi-containing products (37.0%); and crassicauline A in 3 Fuzi samples (5.8%). Industry and clinics should be aware of the unusually high detection rate of these three toxic alkaloids in the Fuzi herb and its related products and take the necessary precautions to protect patients from any potential risk.


Subject(s)
Aconitum/chemistry , Alkaloids/analysis , Plant Extracts/analysis , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid , Diterpenes , Drugs, Chinese Herbal , Limit of Detection , Reference Standards , Reproducibility of Results
8.
J Pharm Anal ; 3(4): 292-297, 2013 Aug.
Article in English | MEDLINE | ID: mdl-29403830

ABSTRACT

Euphorbia ebracteolata Hayata (E. ebracteolata) is a Chinese herbal medicine used for the treatment of tumor diseases. An ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) based chemical profiling approach was established for the rapid separation and characterization on phloroglucinol derivatives and diterpenes in E. ebracteolata. Three phloroglucinol derivatives and nine diterpenes were identified by exact mass measurement and were further confirmed by Ms2 data. In addition, the chemical profiles of six compounds were acquired by reference standards. Furthermore, the fragmentation rules of phloroglucinol derivatives and diterpenes of E. ebracteolata were analyzed, and each chromatographic peak was classified.

SELECTION OF CITATIONS
SEARCH DETAIL
...