Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Psychoneuroendocrinology ; 129: 105257, 2021 07.
Article in English | MEDLINE | ID: mdl-34023734

ABSTRACT

Clozapine is a second generation antipsychotic drug that has proven to be helpful in the management of patients with psychotic disorders that are resistant to other medications. Unfortunately, the majority of patients treated with clozapine develop metabolic dysregulation, including weight gain and insulin resistance. There are few treatments available to effectively counter these side-effects. The goal of the present study was to use an established animal model to better understand the nature of these metabolic side-effects and determine whether existing drugs could be used to alleviate metabolic changes. Adult female rats were treated with a range of doses of clozapine (2, 10 and 20 mg/kg) and subjected to the hyperinsulinemic-euglycemic clamp, to measure whole-body insulin resistance. Clozapine dose-dependently decreased the glucose infusion rate, reflecting pronounced insulin resistance. To reverse the insulin resistance, rats were co-treated with the ganglionic blocker mecamylamine (0.1, 1.0 and 5.0 mg/kg) which dose-dependently reversed the effects of 10 mg/kg clozapine. A 1.0 mg/kg dose of mecamylamine independently reversed the large increase in peripheral epinephrine caused by treatment with clozapine. To study the influence of specific adrenoceptors, rats were treated with multiple doses of α1 (prazosin), α2 (idazoxan), ß1 (atenolol) and ß2 (butoxamine) adrenoceptor antagonists after the onset of clozapine-induced insulin resistance. Both beta blockers were effective in attenuating the effects of clozapine, while idazoxan had a smaller effect; no change was seen with prazosin. The current results indicate that peripheral catecholamines may play a role in clozapine's metabolic effects and be a target for future treatments.


Subject(s)
Adrenergic Antagonists , Clozapine , Ganglionic Blockers , Insulin Resistance , Adrenergic Antagonists/pharmacology , Animals , Antipsychotic Agents/adverse effects , Antipsychotic Agents/pharmacology , Clozapine/adverse effects , Clozapine/pharmacology , Drug Interactions , Female , Ganglionic Blockers/pharmacology , Insulin Resistance/physiology , Mecamylamine/pharmacology , Rats
2.
Genet Test Mol Biomarkers ; 20(8): 465-70, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27228319

ABSTRACT

AIMS: Catechol-O-methyltransferase (COMT) is an enzyme involved in the degradation of catecholamine neurotransmitters. Due to its role in neurotransmitter flux, multiple COMT variants have been associated with the development of psychiatric disorders. Notably, select single-nucleotide polymorphisms (SNPs) of the COMT gene have been implicated in schizophrenia risk, severity, and treatment response. In recognition of the value of a streamlined genotyping method for COMT SNP detection, this study was designed to develop a simple and economical tetra-primer amplification refractory mutation system (T-ARMS) assay for the concurrent detection of eight COMT SNPs: rs4680, rs737865, rs165599, rs2075507, rs4633, rs4818, rs6269, and rs165774. MATERIALS AND METHODS: T-ARMS is a genotyping method that uses polymerase chain reaction (PCR) to amplify a multiplex reaction consisting of two primer pairs. T-ARMS primers are customized to each SNP and designed to generate different-sized allele-specific amplicons. This assay was applied to a total of 39 genomic DNA samples. Genotypic designations across the panel of SNPs were subsequently validated by Sanger sequencing. RESULTS: T-ARMS reliably and unambiguously detected all three genotypes (homozygous wild type, heterozygous, and homozygous mutant) for each of the eight COMT SNPs. CONCLUSIONS: Compared to traditional low-throughput methods that require post-PCR modification or high-throughput technologies that require sophisticated equipment, T-ARMS is a cost-effective and efficient assay that can be easily adapted by any standard molecular diagnostics laboratory. This T-ARMS assay provides a practical and robust method for COMT SNP detection.


Subject(s)
Catechol O-Methyltransferase/genetics , Polymerase Chain Reaction/methods , Cost-Benefit Analysis , DNA/genetics , DNA Primers , Gene Frequency , Genotype , Genotyping Techniques/economics , Genotyping Techniques/methods , Humans , Polymerase Chain Reaction/economics , Polymorphism, Single Nucleotide , Schizophrenia/enzymology , Schizophrenia/genetics
3.
Int J Methods Psychiatr Res ; 24(3): 235-44, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26118823

ABSTRACT

Brain derived neurotrophic factor (BDNF) is a molecular trophic factor that plays a key role in neuronal survival and plasticity. Single nucleotide polymorphisms (SNPs) of the BDNF gene have been associated with specific phenotypic traits in a large number of neuropsychiatric disorders and the response to psychotherapeutic medications in patient populations. Nevertheless, due to study differences and occasionally contrasting findings, substantial further research is required to understand in better detail the association between specific BDNF SNPs and these psychiatric disorders. While considerable progress has been made recently in developing advanced genotyping platforms of SNPs, many high-throughput probe- or array-based detection methods currently available are limited by high costs, slow processing times or access to advanced instrumentation. The polymerase chain reaction (PCR)-based, tetra-primer amplification refractory mutation system (T-ARMS) method is a potential alternative technique for detecting SNP genotypes efficiently, quickly, easily, and cheaply. As a tool in psychopathology research, T-ARMS was shown to be capable of detecting five common SNPs in the BDNF gene (rs6265, rs988748, rs11030104, 11757G/C and rs7103411), which are all SNPs with previously demonstrated clinical relevance to schizophrenia and depression. The present technique therefore represents a suitable protocol for many research laboratories to study the genetic correlates of BDNF in psychiatric disorders. Copyright Copyright © 2015 John Wiley & Sons, Ltd.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , DNA Mutational Analysis/economics , DNA Mutational Analysis/methods , Mental Disorders/genetics , Nervous System Diseases/genetics , Polymorphism, Single Nucleotide/genetics , Female , Genotype , Humans , Male , Mental Disorders/complications , Nervous System Diseases/complications , Polymerase Chain Reaction/economics , Polymerase Chain Reaction/methods , Reproducibility of Results
4.
PLoS One ; 9(9): e107116, 2014.
Article in English | MEDLINE | ID: mdl-25254366

ABSTRACT

Over the past two decades, there has been a notable rise in the use of antipsychotic drugs, as they are used to treat an increasing number of neuropsychiatric disorders. This rise has been led predominantly by greater use of the second generation antipsychotic (SGA) drugs, which have a low incidence of neurological side-effects. However, many SGAs cause metabolic dysregulation, including glucose intolerance and insulin resistance, thus increasing the risk of cardiometabolic disorders. The metabolic effects of the novel SGA lurasidone, which was approved by the Food and Drug Administration in 2010, remain largely unknown. As rodent models accurately predict the metabolic effects of SGAs in humans, the aim of the present study was to use sophisticated animal models of glucose tolerance and insulin resistance to measure the metabolic effects of lurasidone. In parallel, we compared the SGA olanzapine, which has established metabolic effects. Adult female rats were treated with vehicle, lurasidone (0.2, 0.8 or 2.0 mg/kg, s.c.) or olanzapine (10.0 mg/kg, s.c.) and subjected to the glucose tolerance test (GTT). Separate groups of rats were treated with vehicle, lurasidone (0.2, 0.8 or 2.0 mg/kg, s.c.) or olanzapine (1.5 and 15 mg/kg, s.c.) and tested for insulin resistance with the hyperinsulinemic-euglycemic clamp (HIEC). Compared to vehicle treated animals, lurasidone caused mild glucose intolerance in the GTT with a single dose, but there was no effect on insulin resistance in the GTT, measured by HOMA-IR. The HIEC also confirmed no effect of lurasidone on insulin resistance. In contrast, olanzapine demonstrated dose-dependent and potent glucose intolerance, and insulin resistance in both tests. Thus, in preclinical models, lurasidone demonstrates mild metabolic liability compared to existing SGAs such as olanzapine. However, confirmation of these effects in humans with equivalent tests should be confirmed.


Subject(s)
Antipsychotic Agents/pharmacology , Benzodiazepines/pharmacology , Glucose Tolerance Test , Insulin Resistance , Isoindoles/pharmacology , Thiazoles/pharmacology , Animals , Dose-Response Relationship, Drug , Female , Lurasidone Hydrochloride , Olanzapine , Rats , Rats, Sprague-Dawley
5.
Article in English | MEDLINE | ID: mdl-24140931

ABSTRACT

Second generation antipsychotic drugs are routinely used as treatment for psychotic disorders. Many of these compounds, including olanzapine, cause metabolic side-effects such as impaired glucose tolerance and insulin resistance. Individual antidiabetic drugs can help control elevated glucose levels in patients treated with antipsychotics, but the effects of combining antidiabetics, which routinely occurs with Type 2 diabetes mellitus patients, have never been studied. Presently, we compared the effects of the three different antidiabetics metformin (500mg/kg, p.o.), rosiglitazone (30mg/kg, p.o.) and glyburide (10mg/kg, p.o.) on metabolic dysregulation in adult female rats treated acutely with olanzapine. In addition, dual combinations of each of these antidiabetics were compared head-to-head against each other and the individual drugs. The animals received two daily treatments with antidiabetics and were then treated acutely with olanzapine (10mg/kg, i.p.). Fasting glucose and insulin levels were measured, followed by a 2h glucose tolerance test. Olanzapine caused a large and highly significant glucose intolerance compared to vehicle treated rats. Rosiglitazone decreased glucose levels non-significantly, while both metformin and glyburide significantly decreased glucose levels compared to olanzapine-only treated animals. For antidiabetic dual-drug combinations, the rosiglitazone-metformin group showed an unexpected increase in glucose levels compared to all of the single antidiabetic drugs. However, both the metformin-glyburide and rosiglitazone-glyburide groups showed significantly greater reductions in glucose levels following olanzapine than with single drug treatment alone for metformin or rosiglitazone, bringing glucose levels down to values equivalent to vehicle-only treated animals. These findings indicate that further study of antidiabetic dual-drug combinations in patients treated with antipsychotic drugs is warranted.


Subject(s)
Benzodiazepines/therapeutic use , Glucose Intolerance/drug therapy , Hypoglycemic Agents/therapeutic use , Selective Serotonin Reuptake Inhibitors/therapeutic use , Animals , Disease Models, Animal , Drug Therapy, Combination/methods , Fasting/blood , Female , Glucose Tolerance Test , Glyburide/therapeutic use , Insulin/blood , Metformin/therapeutic use , Olanzapine , Rats , Rats, Sprague-Dawley , Rosiglitazone , Thiazolidinediones/therapeutic use , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...