Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Eur J Cancer ; 152: 78-89, 2021 07.
Article in English | MEDLINE | ID: mdl-34090143

ABSTRACT

AIM: The aim of the study was to assess the prognostic performance of a 6-gene molecular score (OncoMasTR Molecular Score [OMm]) and a composite risk score (OncoMasTR Risk Score [OM]) and to conduct a within-patient comparison against four routinely used molecular and clinicopathological risk assessment tools: Oncotype DX Recurrence Score, Ki67, Nottingham Prognostic Index and Clinical Risk Category, based on the modified Adjuvant! Online definition and three risk factors: patient age, tumour size and grade. METHODS: Biospecimens and clinicopathological information for 404 Irish women also previously enrolled in the Trial Assigning Individualized Options for Treatment [Rx] were provided by 11 participating hospitals, as the primary objective of an independent translational study. Gene expression measured via RT-qPCR was used to calculate OMm and OM. The prognostic value for distant recurrence-free survival (DRFS) and invasive disease-free survival (IDFS) was assessed using Cox proportional hazards models and Kaplan-Meier analysis. All statistical tests were two-sided ones. RESULTS: OMm and OM (both with likelihood ratio statistic [LRS] P < 0.001; C indexes = 0.84 and 0.85, respectively) were more prognostic for DRFS and provided significant additional prognostic information to all other assessment tools/factors assessed (all LRS P ≤ 0.002). In addition, the OM correctly classified more patients with distant recurrences (DRs) into the high-risk category than other risk classification tools. Similar results were observed for IDFS. DISCUSSION: Both OncoMasTR scores were significantly prognostic for DRFS and IDFS and provided additional prognostic information to the molecular and clinicopathological risk factors/tools assessed. OM was also the most accurate risk classification tool for identifying DR. A concise 6-gene signature with superior risk stratification was shown to increase prognosis reliability, which may help clinicians optimise treatment decisions.


Subject(s)
Antineoplastic Agents, Hormonal/therapeutic use , Biomarkers, Tumor/genetics , Breast Neoplasms/mortality , Breast/pathology , Neoplasm Recurrence, Local/epidemiology , Adult , Aged , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Disease-Free Survival , Female , Gene Expression Profiling , Genetic Testing/methods , Humans , Kaplan-Meier Estimate , Middle Aged , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Observational Studies as Topic , Prognosis , Prospective Studies , Receptor, ErbB-2/analysis , Receptor, ErbB-2/metabolism , Receptors, Estrogen/analysis , Receptors, Estrogen/metabolism , Receptors, Progesterone/analysis , Receptors, Progesterone/metabolism , Reproducibility of Results , Risk Assessment/methods , Risk Assessment/statistics & numerical data , Young Adult
2.
Nat Methods ; 10(7): 641-6, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23749303

ABSTRACT

We developed an integrated chip for real-time amplification and detection of nucleic acid using pH-sensing complementary metal-oxide semiconductor (CMOS) technology. Here we show an amplification-coupled detection method for directly measuring released hydrogen ions during nucleotide incorporation rather than relying on indirect measurements such as fluorescent dyes. This is a label-free, non-optical, real-time method for detecting and quantifying target sequences by monitoring pH signatures of native amplification chemistries. The chip has ion-sensitive field effect transistor (ISFET) sensors, temperature sensors, resistive heating, signal processing and control circuitry all integrated to create a full system-on-chip platform. We evaluated the platform using two amplification strategies: PCR and isothermal amplification. Using this platform, we genotyped and discriminated unique single-nucleotide polymorphism (SNP) variants of the cytochrome P450 family from crude human saliva. We anticipate this semiconductor technology will enable the creation of devices for cost-effective, portable and scalable real-time nucleic acid analysis.


Subject(s)
Hydrogen-Ion Concentration , Nucleic Acid Amplification Techniques/instrumentation , Semiconductors , Sequence Analysis, DNA/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Equipment Design , Systems Integration
SELECTION OF CITATIONS
SEARCH DETAIL
...