Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; : e2404968, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39033539

ABSTRACT

The feasibility of aqueous zinc-ion batteries for large-scale energy storage is hindered by the inherent challenges of Zn anode. Drawing inspiration from cellular mechanisms governing metal ion and nutrient transport, erythritol is introduced, a zincophilic additive, into the ZnSO4 electrolyte. This innovation stabilizes the Zn anode via chelation interactions between polysaccharides and Zn2+. Experimental tests in conjunction with theoretical calculation results verified that the erythritol additive can simultaneously regulate the solvation structure of hydrated Zn2+ and reconstruct the hydrogen bond network within the solution environment. Additionally, erythritol molecules preferentially adsorb onto the Zn anode, forming a dynamic protective layer. These modifications significantly mitigate undesirable side reactions, thus enhancing the Zn2+ transport and deposition behavior. Consequently, there is a notable increase in cumulative capacity, reaching 6000 mA h cm⁻2 at a current density of 5 mA cm-2. Specifically, a high average coulombic efficiency of 99.72% and long cycling stability of >500 cycles are obtained at 2 mA cm-2 and 1 mA h cm-2. Furthermore, full batteries comprised of MnO2 cathode and Zn anode in an erythritol-containing electrolyte deliver superior capacity retention. This work provides a strategy to promote the performance of Zn anodes toward practical applications.

2.
Chem Commun (Camb) ; 60(56): 7220-7223, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38912546

ABSTRACT

In this work, a SiO2 doped polyvinyl alcohol/polyethylene glycol (PVA/PEG) gel polymer electrolyte (PVA/PEG-SiO2) was constructed via an ice-crystal template for zinc-ion batteries. The SiO2 and the three-dimensional porous skeleton make it have excellent ionic conductivity and mechanical strength, and inhibit the growth of dendrites. The assembled ZIBs exhibit excellent rate performance and cycle stability, making it a promising electrolyte membrane candidate for flexible wearable electronics.

3.
Inorg Chem ; 63(15): 6988-6997, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38569109

ABSTRACT

Rechargeable Zn-MnO2 batteries using mild water electrolytes have garnered significant interest owing to their impressive theoretical energy density and eco-friendly characteristics. However, MnO2 suffers from huge structural changes during the cycles, resulting in very poor stability at high charge-discharge depths. Briefly, the above problems are caused by slow kinetic processes and the dissolution of Mn atoms in the cycles. In this paper, a 2D homojunction electrode material (δ/ε-MnO2) based on δ-MnO2 and ε-MnO2 has been prepared by a two-step electrochemical deposition method. According to the DFT calculations, the charge transfer and bonding between interfaces result in the generation of electronic states near the Fermi surface, giving δ/ε-MnO2 a more continuous distribution of electron states and better conductivity, which is conducive to the rapid insertion/extraction of Zn2+ and H+. Moreover, the strongly coupled Mn-O-Mn interfacial bond can effectively impede dissolution of Mn atoms and thus maintain the structural integrity of δ/ε-MnO2 during the cycles. Accordingly, the δ/ε-MnO2 cathode exhibits high capacity (383 mAh g-1 at 0.1 A g-1), superior rate performance (150 mAh g-1 at 5 A g-1), and excellent cycling stability over 2000 cycles (91.3% at 3 A g-1). Profoundly, this unique homojunction provides a novel paradigm for reasonable selection of different components.

4.
Sensors (Basel) ; 24(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38257505

ABSTRACT

Li-ion batteries are expected to become the mainstream devices for green energy storage or power supply in the future due to their advantages of high energy and power density and long cycle life. Monitoring the temperature and strain change characteristics of Li-ion batteries during operation is conducive to judging their safety performance. The hinged differential lever sensitization structure was used for strain sensitization in the design of an FBG sensor, which also allowed the simultaneous measurement of strain and temperature. The temperature and strain variation characteristics on the surface of a Li-ion soft-packed battery were measured using the des.igned sensor. This report found that the charging and discharging processes of Li-ion batteries are both exothermic processes, and exothermic heat release is greater when discharging than when charging. The strain on the surface of Li-ion batteries depends on electrochemical changes and thermal expansion effects during the charge and discharge processes. The charging process showed an increasing strain, and the discharging process showed a decreasing strain. Thermal expansion was found to be the primary cause of strain at high rates.

5.
Talanta ; 265: 124796, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37385187

ABSTRACT

Evaluating the transformer aging state and detecting multi-aging characteristics in transformer oil with high sensitivity and fast speed has become a key challenge. This study introduces a P-N heterojunction (CNTs@NiO-α-Fe2O3) fabricated through electroless nickel plating and a one-step hydrothermal method. Additionally, silver nanoparticles (AgNPs) with adjustable particle sizes are grown on the surface using a chemical reduction method. To obtain high sensitivity and rapid SERS signal, CNTs@NiO-α-Fe2O3-Ag gel is adsorbed on a disposable needle filter (220 nm) surface, and 4-aminothiophene (4-ATP) is grafted onto the surface of SERS substrate. The minimum detection limit was 0.025 mg/L (EF = 5.22 × 104), and the response time of SERS best signal could be shortened to 3 min. Density functional theory (DFT) calculations reveal that by constructing a P-N heterostructure of NiO-Fe2O3 and assessing the adsorption energies of furfural, acetone, and methanol on the surface of the P-N heterojunction. This SERS strategy has a huge application prospect in the aging diagnosis of oil-paper insulation systems in a transformer.

6.
Int J Mol Sci ; 23(21)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36362419

ABSTRACT

Acetone is an essential indicator for determining the aging of transformer insulation. Rapid, sensitive, and accurate quantification of acetone in transformer oil is highly significant in assessing the aging of oil-paper insulation systems. In this study, silver nanowires modified with small zinc oxide nanoparticles (ZnO NPs@Ag NWs) were excellent surface-enhanced Raman scattering (SERS) substrates and efficiently and sensitively detected acetone in transformer oil. Stoichiometric models such as multiple linear regression (MLR) models and partial least square regressions (PLS) were investigated to quantify acetone in transformer oil and compared with commonly used univariate linear regressions (ULR). PLS combined with a preprocessing algorithm provided the best prediction model, with a correlation coefficient of 0.998251 for the calibration set, 0.997678 for the predictive set, a root mean square error in the calibration set (RMSECV = 0.12596 mg/g), and a prediction set (RMSEP = 0.11408 mg/g). For an acetone solution of 0.003 mg/g, the mean absolute percentage error (MAPE) was the lowest among the three quantitative models. For a concentration of 7.29 mg/g, the MAPE was 1.60%. This method achieved limits of quantification and detections of 0.003 mg/g and 1 µg/g, respectively. In general, these results suggested that ZnO NPs@Ag NWs as SERS substrates coupled with PLS simply and accurately quantified trace acetone concentrations in transformer oil.


Subject(s)
Metal Nanoparticles , Nanowires , Zinc Oxide , Silver , Acetone , Spectrum Analysis, Raman/methods
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 273: 121067, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35228084

ABSTRACT

Accurately evaluating the aging state of oil paper insulation in electrical equipment is a key to ensure the safe operation of the power transformer. For achieving highly sensitive in-situ detection of dissolved furfural in transformer oil with good reproducibility, flower-like silver nanoparticles modified with carbon nanotubes (CNTs@Ag-F-AgNPs) was synthesized by a combination of electroless silver plating and redox method. The large specific surface area and strong adsorption capacity of CNTs@Ag promoted the formation of more "hot spots". CNTs@Ag-F-AgNPs were adsorbed on Si-Au substrate via mercapto groups on the coupling agent 1'4 phenyldimercaptan molecule (BDT). Using rhodamine 6G (R6G) as probe molecule, the enhanced factor reached 6.96 × 109. Then, the substrate was used for in-situ SERS detection of transformer oil-dissolved furfural at different concentrations and the detection limit was 2.25 mg/L at 1703 cm-1 (Stretching vibration of C = O in furfural molecule), fulfilling requirements of furfural content detection after severe aging of transformer (4 mg/L). Besides, the relative standard deviation (RSD) of characteristic peak intensity at ten different positions was only 1.74%. These results exhibite that three-dimensional nanostructure with high sensitivity and good reproducibility exhibited a wide application range for in situ detection of dissolved trace furfural in transformer oil.


Subject(s)
Metal Nanoparticles , Nanotubes, Carbon , Furaldehyde , Metal Nanoparticles/chemistry , Reproducibility of Results , Silver/chemistry , Spectrum Analysis, Raman/methods
8.
Anal Chem ; 93(7): 3403-3410, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33556238

ABSTRACT

Rapid, quantitative, and group-targeting detection of total benzodiazepines (BZDs) is critical to create an accurate judgement in emergent medical and forensic settings. Large-size (111) faceted Ag nanosheets decorated with small ZnO nanoparticles were designed as the prominent surface-enhanced Raman scattering substrate, which possessed advantages of specific metal facets and additional charge-transfer (CT) effect from the semiconductor. The vital and bridge role of ZnO in the CT effect was systematically studied via experimental investigations and molecular dynamics simulation, which proves the essentiality of an appropriate ZnO decoration density. Upon determining optimal Ag NS/ZnO hybrids, a calibration curve of estazolam was established with a 0.5 nM detection limit. Based on the obtained curve, group-targeting screening was achieved toward total concentrations of five BZDs (estazolam, oxazepam, alprazolam, triazolam, and lorazepam). Importantly, the total concentrations of BZDs in mice serum were accurately monitored with changing analytical time during the metabolic process, which was in agreement with the tendency measured by liquid chromatography with tandem mass spectrometry.

9.
Talanta ; 222: 121544, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33167251

ABSTRACT

96-Well technology is associated with automated sample preparation and simultaneous analysis based on the low-cost well plate format. To explore the potential applications of 96-well technology in SERS detection, we examined the surface-bound electroless deposition procedure for the preparation of uniform and stable Ag mirror films on polydopamine (PDA)-coated well plates as active-SERS substrates. In the presented procedure, small Ag seeds assembled on PDA coating were employed as the surface-bound catalyst and provided the active sites for electroless Ag deposition. The high-quality Ag mirror films showed high performance in terms of sensitivity, uniformity, reproducibility and stability using rhodamine 6G (R6G) as the probe molecule. A remarkable enhancement factor of 3.41 × 108 was obtained. The relative standard deviations against well-by-well and batch-by-batch reproducibility were less than 5%. The SERS films on well plates were successfully used to quantify the amounts of organic dyes (R6G and malachite green) in environmental water samples and small biological molecules (adenosine triphosphate and adenine) in urine matrix, displaying satisfactory sensitivity, selectivity and recovery. Their limit of detection values were at nanomolar, even picomolar concentration.

10.
Sci Total Environ ; 696: 134013, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31465923

ABSTRACT

This paper reports the chemical synthesis of highly-active Mn3O4/PdCu nanocomposites coated with N-doped carbon (NC) shell using polydopamine (PDA) as the carbon source, which provides high specific surface area and pore volume. The structure and morphology of Mn3O4/PdCu@NC nanocomposites were systematically studied. Taking advantage of the synergistic effects of PdCu alloy and Mn3O4 support, the Mn3O4/PdCu@NC catalyst exhibited an outstanding activity toward the reduction of 4-nitrophenol (4-NP), in comparison to Mn3O4/PdM@NC (M = Ni, Au, Ag), Mn3O4/PdCu@PDA, and commercial Pd/C catalyst. Owing to the protection by NC shell, the as-prepared catalyst showed stable conversion efficiency of up to 90% over ten successive cycles. Considering 4-NP as one of the important organic pollutants from industrial production, the effects of various inorganic and organic species on the catalytic efficiency were further tested and most of them had negligible impact. This strategy of utilizing an N-doped carbon shell could be extended to obtain PdCu alloys supported on other metal oxides, making it applicable for applications in treatment of environmental pollutants.

11.
Mikrochim Acta ; 186(1): 46, 2019 01 04.
Article in English | MEDLINE | ID: mdl-30610467

ABSTRACT

CeO2-encapsulated gold nanoparticles (AuNPs) were anchored to reduced graphene oxide (RGO/Au@CeO2) by an interfacial auto-redox reaction in a solution containing tetrachloroauric acid and Ce(III) on a solid support. The resulting material was placed on a glassy carbon electrode (GCE) and used as an electrochemical hydrazine sensor at trace levels. The electrocatalytic activity of the modified GCE towards hydrazine oxidation was significantly enhanced as compared to only RGO/CeO2, or CeO2-encapsulated AuNPs, or AuNPs loaded on CeO2 modified with RGO. This enhancement is attributed to the excellent conductivity and large surface area of RGO, and the strong interaction between the reversible Ce4+/Ce3+ and Auδ+/Au0 redox systems. The kinetics of the hydrazine oxidation was studied by electrochemical methods. The sensor, best operated at a peak voltage of 0.35 V (vs. saturated calomel electrode), had a wide linear range (that extends from 10 nM to 3 mM), a low detection limit (3.0 nM), good selectivity and good stability. It was successfully employed for the monitoring of hydrazine in spiked environmental water samples and to in-vitro tracking of hydrazine in cells with respect to its potential cytotoxicity. Graphical abstract CeO2-encapsulated gold nanoparticles anchored on reduced graphene oxide with the strong interaction between the reversible Ce4+/Ce3+ and Auδ+/Au0 reductions can be used for sensitive detection of hydrazine with detection limit of 3 nM and good selectivity in environmental and biological samples.


Subject(s)
Electrochemical Techniques/methods , Graphite/chemistry , Hydrazines/analysis , Metal Nanoparticles/chemistry , Cerium/chemistry , Electrochemical Techniques/standards , Electrodes , Gold , Limit of Detection , Oxidation-Reduction , Oxides
SELECTION OF CITATIONS
SEARCH DETAIL
...