Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
NPJ Digit Med ; 7(1): 123, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740907

ABSTRACT

The demand for home sleep apnea testing (HSAT) devices is escalating, particularly in the context of the coronavirus 2019 (COVID-19) pandemic. The absence of standardized development and verification procedures poses a significant challenge. This study meticulously analyzed the approval process characteristics of HSAT devices by the U.S. Food and Drug Administration (FDA) from September 1, 2003, to September 1, 2023, with a primary focus on ensuring safety and clinical effectiveness. We examined 58 reports out of 1046 that underwent FDA clearance via the 510(k) and de novo pathways. A substantial surge in certifications after the 2022 pandemic was observed. Type-3 devices dominated, signifying a growing trend for both home and clinical use. Key measurement items included respiration and sleep analysis, with the apnea-hypopnea index (AHI) and sleep stage emerging as pivotal indicators. The majority of FDA-cleared HSAT devices adhered to electrical safety and biocompatibility standards. Critical considerations encompass performance and function testing, usability, and cybersecurity. This study emphasized the nearly indispensable role of clinical trials in ensuring the clinical effectiveness of HSAT devices. Future studies should propose guidances that specify stringent requirements, robust clinical trial designs, and comprehensive performance criteria to guarantee the minimum safety and clinical effectiveness of HSATs.

2.
NPJ Digit Med ; 6(1): 38, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36899073

ABSTRACT

As a new therapeutic technique based on digital technology, the commercialization and clinical application of digital therapeutics (DTx) are increasing, and the demand for expansion to new clinical fields is remarkably high. However, the use of DTx as a general medical component is still ambiguous, and this ambiguity may be owing to a lack of consensus on a definition, in addition to insufficiencies in research and development, clinical trials, standardization of regulatory frameworks, and technological maturity. In this study, we conduct an in-depth investigation and analysis of definitions, clinical trials, commercial products, and the regulatory status related to DTx using published literature, ClinicalTrials.gov, and web pages of regulatory and private organizations in several countries. Subsequently, we suggest the necessity and considerations for international agreements on the definition and characteristics of DTx, focusing on the commercialization characteristics. In addition, we discuss the status and considerations of clinical research, key technology factors, and the direction of regulatory developments. In conclusion, for the successful settlement of DTx, real-world evidence-based validation should be strengthened by establishing a cooperative system between researchers, manufacturers, and governments, and there should be effective technologies and regulatory systems for overcoming engagement barriers of DTx.

3.
Front Aging Neurosci ; 14: 871432, 2022.
Article in English | MEDLINE | ID: mdl-35478701

ABSTRACT

Background: Mild cognitive impairment (MCI) may occur due to several forms of neurodegenerative diseases and non-degenerative conditions and is associated with cognitive impairment that does not affect everyday activities. For a timely diagnosis of MCI to prevent progression to dementia, a screening tool of fast, low-cost and easy access is needed. Recent research on eye movement hints it a potential application for the MCI screening. However, the precise extent of cognitive function decline and eye-movement control alterations in patients with MCI is still unclear. Objective: This study examined executive control deficits and saccade behavioral changes in patients with MCI using comprehensive neuropsychological assessment and interleaved saccade paradigms. Methods: Patients with MCI (n = 79) and age-matched cognitively healthy controls (HC) (n = 170) completed four saccadic eye-movement paradigms: prosaccade (PS)/antisaccade (AS), Go/No-go, and a battery of neuropsychological tests. Results: The findings revealed significantly longer latency in patients with MCI than in HC during the PS task. Additionally, patients with MCI had a lower proportion of correct responses and a marked increase in inhibition errors for both PS/AS and Go/No-go tasks. Furthermore, when patients with MCI made errors, they failed to self-correct many of these inhibition errors. In addition to the increase in inhibition errors and uncorrected inhibition errors, patients with MCI demonstrated a trend toward increased correction latencies. We also showed a relationship between neuropsychological scores and correct and error saccade responses. Conclusion: Our results demonstrate that, similar to patients with Alzheimer's dementia (AD), patients with MCI generate a high proportion of erroneous saccades toward the prepotent target and fail to self-correct many of these errors, which is consistent with an impairment of inhibitory control and error monitoring. Significance: The interleaved PS/AS and Go/No-go paradigms are sensitive and objective at detecting subtle cognitive deficits and saccade changes in MCI, indicating that these saccadic eye movement paradigms have clinical potential as a screening tool for MCI.

4.
Sensors (Basel) ; 19(18)2019 Sep 12.
Article in English | MEDLINE | ID: mdl-31547437

ABSTRACT

Post-stroke gait dysfunction occurs at a very high prevalence. A practical method to quantitatively analyze the characteristics of hemiparetic gait is needed in both clinical and community settings. This study developed a 10-channeled textile capacitive pressure sensing insole (TCPSI) with a real-time monitoring system and tested its performance through hemiparetic gait pattern analysis. Thirty-five subjects (18 hemiparetic, 17 healthy) walked down a 40-m long corridor at a comfortable speed while wearing TCPSI inside the shoe. For gait analysis, the percentage of the plantar pressure difference (PPD), the step count, the stride time, the coefficient of variation, and the phase coordination index (PCI) were used. The results of the stroke patients showed a threefold higher PPD, a higher step count (41.61 ± 10.7), a longer average stride time on the affected side, a lower mean plantar pressure on the affected side, higher plantar pressure in the toe area and the lateral side of the foot, and a threefold higher PCI (hemi: 19.50 ± 13.86%, healthy: 5.62 ± 5.05%) compared to healthy subjects. This study confirmed that TCPSI is a promising tool for distinguishing hemiparetic gait patterns and thus may be used as a wearable gait function evaluation tool, the external feedback gait training device, and a simple gait pattern analyzer for both hemiparetic patients and healthy individuals.


Subject(s)
Gait Analysis/instrumentation , Paresis/physiopathology , Stroke/physiopathology , Adult , Aged , Equipment Design , Female , Gait Analysis/methods , Humans , Male , Middle Aged , Pressure , Textiles , Wearable Electronic Devices
5.
Materials (Basel) ; 11(12)2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30513646

ABSTRACT

Spatiotemporal analysis of gait pattern is meaningful in diagnosing and prognosing foot and lower extremity musculoskeletal pathologies. Wearable smart sensors enable continuous real-time monitoring of gait, during daily life, without visiting clinics and the use of costly equipment. The purpose of this study was to develop a light-weight, durable, wireless, soft-material-based smart insole (SMSI) and examine its range of feasibility for real-time gait pattern analysis. A total of fifteen healthy adults (male: 10, female: 5, age 25.1 ± 2.64) were recruited for this study. Performance evaluation of the developed insole sensor was first executed by comparing the signal accuracy level between the SMSI and an F-scan. Gait data were simultaneously collected by two sensors for 3 min, on a treadmill, at a fixed speed. Each participant walked for four times, randomly, at the speed of 1.5 km/h (C1), 2.5 km/h (C2), 3.5 km/h (C3), and 4.5 km/h (C4). Step count from the two sensors resulted in 100% correlation in all four gait speed conditions (C1: 89 ± 7.4, C2: 113 ± 6.24, C3: 141 ± 9.74, and C4: 163 ± 7.38 steps). Stride-time was concurrently determined and R2 values showed a high correlation between the two sensors, in both feet (R² ≥ 0.90, p < 0.05). Bilateral gait coordination analysis using phase coordination index (PCI) was performed to test clinical feasibility. PCI values of the SMSI resulted in 1.75 ± 0.80% (C1), 1.72 ± 0.81% (C2), 1.72 ± 0.79% (C3), and 1.73 ± 0.80% (C4), and those of the F-scan resulted in 1.66 ± 0.66%, 1.70 ± 0.66%, 1.67 ± 0.62%, and 1.70 ± 0.62%, respectively, showing the presence of a high correlation (R² ≥ 0.94, p < 0.05). The insole developed in this study was found to have an equivalent performance to commercial sensors, and thus, can be used not only for future sensor-based monitoring device development studies but also in clinical setting for patient gait evaluations.

6.
J Med Syst ; 42(4): 76, 2018 Mar 12.
Article in English | MEDLINE | ID: mdl-29532314

ABSTRACT

Gait is not only one of the most important functions and activities in daily life but is also a parameter to monitor one's health status. We propose a single channel capacitive proximity pressure sensor (TCPS) and gait monitoring system for smart healthcare. Insole-type TCPS (270 mm in length) was designed consisting of three layers including two shield layers and a sensor layer. Analyzing the step count and stride time are the basic indicators in gait analysis, thus they were selected as evaluation indicators. A total of 12 subjects participated in the experiment to evaluate the resolution of our TCPS. To evaluate the accuracy of TCPS, step count and its error rates were simultaneously detected by naked eye, ZIKTO Walk (ZIKTO Co., Korea), and HJ-203-K pedometer (Omron Co., Japan) as reference. Results showed that the error rate of 1.77% in TCPS was lower than those of other devices and correlation coefficient was 0.958 (p-value = 0.000). ZIKTO Walk and pedometer do not provide information on stride time, therefore it was detected by F-scan (Tekscan, USA) to evaluate the performance of TCPS. As a result, error rate of stride time measured by TCPS was found to be 1% and the correlation coefficient was 0.685 (p-value = 0.000). According to these results, our proposed system may be helpful in development of gait monitoring and measurement system as smart healthcare.


Subject(s)
Gait/physiology , Remote Sensing Technology/instrumentation , Textiles , Accelerometry , Adult , Biomechanical Phenomena , Female , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...