Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
PLoS One ; 19(5): e0301293, 2024.
Article in English | MEDLINE | ID: mdl-38743677

ABSTRACT

Bicycle safety has emerged as a pressing concern within the vulnerable transportation community. Numerous studies have been conducted to identify the significant factors that contribute to the severity of cyclist injuries, yet the findings have been subject to uncertainty due to unobserved heterogeneity and class imbalance. This research aims to address these issues by developing a model to examine the impact of key factors on cyclist injury severity, accounting for data heterogeneity and imbalance. To incorporate unobserved heterogeneity, a total of 3,895 bicycle accidents were categorized into three homogeneous sub-accident clusters using Latent Class Cluster Analysis (LCA). Additionally, five over-sampling techniques were employed to mitigate the effects of data imbalance in each accident cluster category. Subsequently, Bayesian Network (BN) structure learning algorithms were utilized to construct 32 BN models after pairing the accident data from the four accident cluster types before and after sampling. The optimal BN models for each accident cluster type provided insights into the key factors associated with cyclist injury severity. The results indicate that the key factors influencing serious cyclist injuries vary heterogeneously across different accident clusters. Female cyclists, adverse weather conditions such as rain and snow, and off-peak periods were identified as key factors in several subclasses of accident clusters. Conversely, factors such as the week of the accident, characteristics of the trafficway, the season, drivers failing to yield to the right-of-way, distracted cyclists, and years of driving experience were found to be key factors in only one subcluster of accident clusters. Additionally, factors such as the time of the crash, gender of the cyclist, and weather conditions exhibit varying levels of heterogeneity across different accident clusters, and in some cases, exhibit opposing effects.


Subject(s)
Accidents, Traffic , Bayes Theorem , Bicycling , Bicycling/injuries , Humans , Female , Male , Accidents, Traffic/statistics & numerical data , Adult , Cluster Analysis , Accidental Injuries/epidemiology , Accidental Injuries/etiology , Middle Aged , Young Adult , Adolescent , Risk Factors
2.
J Clin Invest ; 134(7)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300705

ABSTRACT

Stromal interaction molecule 1 (STIM1) is a Ca2+ sensor located in the sarcoplasmic reticulum (SR) of skeletal muscle, where it is best known for its role in store-operated Ca2+ entry (SOCE). Genetic syndromes resulting from STIM1 mutations are recognized as a cause of muscle weakness and atrophy. Here, we focused on a gain-of-function mutation that occurs in humans and mice (STIM1+/D84G mice), in which muscles exhibited constitutive SOCE. Unexpectedly, this constitutive SOCE did not affect global Ca2+ transients, SR Ca2+ content, or excitation-contraction coupling (ECC) and was therefore unlikely to underlie the reduced muscle mass and weakness observed in these mice. Instead, we demonstrate that the presence of D84G STIM1 in the nuclear envelope of STIM1+/D84G muscle disrupted nuclear-cytosolic coupling, causing severe derangement in nuclear architecture, DNA damage, and altered lamina A-associated gene expression. Functionally, we found that D84G STIM1 reduced the transfer of Ca2+ from the cytosol to the nucleus in myoblasts, resulting in a reduction of [Ca2+]N. Taken together, we propose a novel role for STIM1 in the nuclear envelope that links Ca2+ signaling to nuclear stability in skeletal muscle.


Subject(s)
Muscle Weakness , Nuclear Envelope , Stromal Interaction Molecule 1 , Animals , Humans , Mice , Calcium/metabolism , Calcium Signaling , Muscle Weakness/genetics , Muscle Weakness/metabolism , Muscle, Skeletal/metabolism , Mutation , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Nuclear Envelope/genetics , Nuclear Envelope/metabolism , ORAI1 Protein/genetics , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism
3.
bioRxiv ; 2023 May 03.
Article in English | MEDLINE | ID: mdl-37205564

ABSTRACT

Stromal interaction molecule 1 (STIM1) is a Ca 2+ sensor located in the sarcoplasmic reticulum (SR) of skeletal muscle where it is best known for its role in store operated Ca 2+ entry (SOCE). Genetic syndromes resulting from STIM1 mutations are recognized as a cause of muscle weakness and atrophy. Here, we focus on a gain of function mutation that occurs in humans and mice (STIM1 +/D84G mice) where muscles exhibit constitutive SOCE. Unexpectedly, this constitutive SOCE did not affect global Ca 2+ transients, SR Ca 2+ content or excitation contraction coupling (ECC) and was therefore unlikely to underlie the reduced muscle mass and weakness observed in these mice. Instead, we demonstrate that the presence of D84G STIM1 in the nuclear envelope of STIM1 +/D84G muscle disrupts nuclear-cytosolic coupling causing severe derangement in nuclear architecture, DNA damage, and altered lamina A associated gene expression. Functionally, we found D84G STIM1 reduced the transfer of Ca 2+ from the cytosol to the nucleus in myoblasts resulting in a reduction of [Ca 2+ ] N . Taken together, we propose a novel role for STIM1 in the nuclear envelope that links Ca 2+ signaling to nuclear stability in skeletal muscle.

4.
Mol Ther Nucleic Acids ; 31: 662-673, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36910716

ABSTRACT

Acute lung injury (ALI) is a syndrome of acute inflammation, barrier disruption, and hypoxemic respiratory failure associated with high morbidity and mortality. Diverse conditions lead to ALI, including inhalation of toxic substances, aspiration of gastric contents, infection, and trauma. A shared mechanism of acute lung injury is cellular toxicity from damage-associated molecular patterns (DAMPs), including extracellular histones. We recently described the selection and efficacy of a histone-binding RNA aptamer (HBA7). The current study aimed to identify the effects of extracellular histones in the lung and determine if HBA7 protected mice from ALI. Histone proteins decreased metabolic activity, induced apoptosis, promoted proinflammatory cytokine production, and caused endothelial dysfunction and platelet activation in vitro. HBA7 prevented these effects. The oropharyngeal aspiration of histone proteins increased neutrophil and albumin levels in bronchoalveolar lavage fluid (BALF) and precipitated neutrophil infiltration, interstitial edema, and barrier disruption in alveoli in mice. Similarly, inhaling wood smoke particulate matter, as a clinically relevant model, increased lung inflammation and alveolar permeability. Treatment by HBA7 alleviated lung injury in both models of ALI. These findings demonstrate the pulmonary delivery of HBA7 as a nucleic acid-based therapeutic for ALI.

5.
JCI Insight ; 6(17)2021 09 08.
Article in English | MEDLINE | ID: mdl-34494555

ABSTRACT

Stromal interaction molecule 1 (STIM1), the sarcoplasmic reticulum (SR) transmembrane protein, activates store-operated Ca2+ entry (SOCE) in skeletal muscle and, thereby, coordinates Ca2+ homeostasis, Ca2+-dependent gene expression, and contractility. STIM1 occupies space in the junctional SR membrane of the triads and the longitudinal SR at the Z-line. How STIM1 is organized and is retained in these specific subdomains of the SR is unclear. Here, we identified desmin, the major type III intermediate filament protein in muscle, as a binding partner for STIM1 based on a yeast 2-hybrid screen. Validation of the desmin-STIM1 interaction by immunoprecipitation and immunolocalization confirmed that the CC1-SOAR domains of STIM1 interact with desmin to enhance STIM1 oligomerization yet limit SOCE. Based on our studies of desmin-KO mice, we developed a model wherein desmin connected STIM1 at the Z-line in order to regulate the efficiency of Ca2+ refilling of the SR. Taken together, these studies showed that desmin-STIM1 assembles a cytoskeletal-SR connection that is important for Ca2+ signaling in skeletal muscle.


Subject(s)
Desmin/genetics , Gene Expression Regulation , Muscle, Skeletal/metabolism , RNA/genetics , Stromal Interaction Molecule 1/genetics , Animals , Calcium Signaling , Cells, Cultured , Desmin/biosynthesis , Membrane Proteins/biosynthesis , Membrane Proteins/genetics , Mice , Microscopy, Electron, Transmission , Models, Animal , Muscle, Skeletal/ultrastructure , Sarcoplasmic Reticulum/metabolism , Stromal Interaction Molecule 1/biosynthesis
6.
Pflugers Arch ; 473(3): 417-434, 2021 03.
Article in English | MEDLINE | ID: mdl-33638008

ABSTRACT

Store-operated Ca2+ entry (SOCE) is an ancient and ubiquitous Ca2+ signaling pathway that is present in virtually every cell type. Over the last two decades, many studies have implicated this non-voltage dependent Ca2+ entry pathway in cardiac physiology. The relevance of the SOCE pathway in cardiomyocytes is often questioned given the well-established role for excitation contraction coupling. In this review, we consider the evidence that STIM1 and SOCE contribute to Ca2+ dynamics in cardiomyocytes. We discuss the relevance of this pathway to cardiac growth in response to developmental and pathologic cues. We also address whether STIM1 contributes to Ca2+ store refilling that likely impacts cardiac pacemaking and arrhythmogenesis in cardiomyocytes.


Subject(s)
Calcium Signaling/physiology , Intracellular Calcium-Sensing Proteins/metabolism , Myocytes, Cardiac/metabolism , Stromal Interaction Molecule 1/metabolism , Animals , Excitation Contraction Coupling/physiology , Humans
7.
JCI Insight ; 5(19)2020 10 02.
Article in English | MEDLINE | ID: mdl-32870823

ABSTRACT

The Ca2+-binding protein calmodulin has emerged as a pivotal player in tuning Na+ channel function, although its impact in vivo remains to be resolved. Here, we identify the role of calmodulin and the NaV1.5 interactome in regulating late Na+ current in cardiomyocytes. We created transgenic mice with cardiac-specific expression of human NaV1.5 channels with alanine substitutions for the IQ motif (IQ/AA). The mutations rendered the channels incapable of binding calmodulin to the C-terminus. The IQ/AA transgenic mice exhibited normal ventricular repolarization without arrhythmias and an absence of increased late Na+ current. In comparison, transgenic mice expressing a lidocaine-resistant (F1759A) human NaV1.5 demonstrated increased late Na+ current and prolonged repolarization in cardiomyocytes, with spontaneous arrhythmias. To determine regulatory factors that prevent late Na+ current for the IQ/AA mutant channel, we considered fibroblast growth factor homologous factors (FHFs), which are within the NaV1.5 proteomic subdomain shown by proximity labeling in transgenic mice expressing NaV1.5 conjugated to ascorbate peroxidase. We found that FGF13 diminished late current of the IQ/AA but not F1759A mutant cardiomyocytes, suggesting that endogenous FHFs may serve to prevent late Na+ current in mouse cardiomyocytes. Leveraging endogenous mechanisms may furnish an alternative avenue for developing novel pharmacology that selectively blunts late Na+ current.


Subject(s)
Action Potentials , Arrhythmias, Cardiac/pathology , Calmodulin/metabolism , Fibroblast Growth Factors/metabolism , Mutation , Myocytes, Cardiac/pathology , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Animals , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Calcium Signaling , Calmodulin/genetics , Female , Fibroblast Growth Factors/genetics , Humans , Male , Mice , Mice, Transgenic , Myocytes, Cardiac/metabolism , NAV1.5 Voltage-Gated Sodium Channel/genetics , Protein Binding , Sodium/metabolism
8.
J Gen Physiol ; 149(2): 277-293, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28087622

ABSTRACT

Increased "persistent" current, caused by delayed inactivation, through voltage-gated Na+ (NaV) channels leads to cardiac arrhythmias or epilepsy. The underlying molecular contributors to these inactivation defects are poorly understood. Here, we show that calmodulin (CaM) binding to multiple sites within NaV channel intracellular C-terminal domains (CTDs) limits persistent Na+ current and accelerates inactivation across the NaV family. Arrhythmia or epilepsy mutations located in NaV1.5 or NaV1.2 channel CTDs, respectively, reduce CaM binding either directly or by interfering with CTD-CTD interchannel interactions. Boosting the availability of CaM, thus shifting its binding equilibrium, restores wild-type (WT)-like inactivation in mutant NaV1.5 and NaV1.2 channels and likewise diminishes the comparatively large persistent Na+ current through WT NaV1.6, whose CTD displays relatively low CaM affinity. In cerebellar Purkinje neurons, in which NaV1.6 promotes a large physiological persistent Na+ current, increased CaM diminishes the persistent Na+ current, suggesting that the endogenous, comparatively weak affinity of NaV1.6 for apoCaM is important for physiological persistent current.


Subject(s)
Arrhythmias, Cardiac/genetics , Calmodulin/metabolism , Epilepsy/genetics , Voltage-Gated Sodium Channels/metabolism , Binding Sites , HEK293 Cells , Humans , Mutation , Protein Binding , Voltage-Gated Sodium Channels/chemistry , Voltage-Gated Sodium Channels/genetics
9.
Proc Natl Acad Sci U S A ; 113(19): E2665-74, 2016 May 10.
Article in English | MEDLINE | ID: mdl-27044086

ABSTRACT

Clustering of voltage-gated sodium channels (VGSCs) within the neuronal axon initial segment (AIS) is critical for efficient action potential initiation. Although initially inserted into both somatodendritic and axonal membranes, VGSCs are concentrated within the axon through mechanisms that include preferential axonal targeting and selective somatodendritic endocytosis. How the endocytic machinery specifically targets somatic VGSCs is unknown. Here, using knockdown strategies, we show that noncanonical FGF13 binds directly to VGSCs in hippocampal neurons to limit their somatodendritic surface expression, although exerting little effect on VGSCs within the AIS. In contrast, homologous FGF14, which is highly concentrated in the proximal axon, binds directly to VGSCs to promote their axonal localization. Single-point mutations in FGF13 or FGF14 abrogating VGSC interaction in vitro cannot support these specific functions in neurons. Thus, our data show how the concerted actions of FGF13 and FGF14 regulate the polarized localization of VGSCs that supports efficient action potential initiation.


Subject(s)
Action Potentials , Voltage-Gated Sodium Channels/metabolism , Axons/metabolism , Humans , Neurons/metabolism , Sodium/metabolism , Sodium Channels/genetics
10.
PLoS One ; 11(3): e0152355, 2016.
Article in English | MEDLINE | ID: mdl-27028743

ABSTRACT

Drug-induced long-QT syndrome (diLQTS) is often due to drug block of IKr, especially in genetically susceptible patients with subclinical mutations in the IKr-encoding KCHN2. Few variants in the cardiac NaV1.5 Na+ channel complex have been associated with diLQTS. We tested whether a novel SNTA1 (α1-syntrophin) variant (p.E409Q) found in a patient with diLQTS increases late sodium current (INa-L), thereby providing a disease mechanism. Electrophysiological studies were performed in HEK293T cells co-expressing human NaV1.5/nNOS/PMCA4b with either wild type (WT) or SNTA1 variants (A390V-previously reported in congenital LQTS; and E409Q); and in adult rat ventricular cardiomyocytes infected with SNTA1 expressing adenoviruses (WT or one of the two SNTA1 variants). In HEK293T cells and in cardiomyocytes, there was no significant difference in the peak INa densities among the SNTA1 WT and variants. However, both variants increased INa-L (% of peak current) in HEK293T cells (0.58 ± 0.10 in WT vs. 0.90 ± 0.11 in A390V, p = 0.048; vs. 0.88 ± 0.07 in E409Q, p = 0.023). In cardiomyocytes, INa-L was significantly increased by E409Q, but not by A390V compared to WT (0.49 ± 0.14 in WT vs.0.94 ± 0.23 in A390V, p = 0.099; vs. 1.12 ± 0.24 in E409Q, p = 0.019). We demonstrated that a novel SNTA1 variant is likely causative for diLQTS by augmenting INa-L. These data suggest that variants within the NaV1.5-interacting α1-syntrophin are a potential mechanism for diLQTS, thereby expanding the concept that variants within congenital LQTS loci can cause diLQTS.


Subject(s)
Calcium-Binding Proteins/genetics , Long QT Syndrome/genetics , Membrane Proteins/genetics , Muscle Proteins/genetics , Adult , Animals , Genetic Association Studies , Genetic Predisposition to Disease , HEK293 Cells , Humans , Male , Membrane Potentials , Mutation, Missense , Myocytes, Cardiac/metabolism , Rats, Sprague-Dawley , Sodium/metabolism
11.
Arch Gynecol Obstet ; 293(6): 1309-17, 2016 06.
Article in English | MEDLINE | ID: mdl-26446578

ABSTRACT

PURPOSE: This preliminary study aimed at investigating the feasibility and effective of multi-scale hyperspectral imaging in detecting cervical neoplasia at both tissue and cellular levels. METHODS: In this paper, we describe a noninvasive diagnosis method with a hyperspectral imager for detection and location of cervical intraepithelial neoplasia (CIN) at multiple scales. At the macroscopic level, the hyperspectral imager was applied to capture the reflectance images of the entire cervix in vivo at a series of wavelengths. At the microscopic level, the hyperspectral imager was coupled with a microscope to collect the transmittance images of the pathological slide. The collected image data were calibrated. A wide-gap second derivative analysis was applied to differentiate CIN from other types of tissue. RESULTS: At both macroscopic and microscopic levels, hyperspectral imaging analysis results were consistent with those of histopathological analysis, indicating the technical feasibility of multi-scale hyperspectral imaging for cervical neoplasia detection with accuracy and efficacy. CONCLUSION: We propose a multi-scale hyperspectral imaging method for noninvasive detection of cervical neoplasia. Comparison of the imaging results with those of gold standard histologic measurements demonstrates that the hyperspectral diagnostic imaging system can distinguish CIN at both tissue and cellular levels.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Spectrum Analysis/methods , Uterine Cervical Dysplasia/diagnostic imaging , Uterine Cervical Neoplasms/diagnostic imaging , Female , Humans , Uterine Cervical Neoplasms/pathology , Uterine Cervical Dysplasia/pathology
12.
Article in English | MEDLINE | ID: mdl-26640496

ABSTRACT

The Feng Gou Zhen (sharp-hook acupuncture) as a traditional form of ancient acupuncture is said to be particularly effective for managing periarthritis of shoulder. We conducted this randomized controlled trial to evaluate the effectiveness of Feng Gou Zhen as an add-on compared to conventional analgesics for patients with PAS. 132 patients were randomly assigned in a 1 : 1 ratio to either a acupuncture group receiving sharp-hook acupuncture plus acupoint injection with conventional analgesics or a control group. Patients from both groups were evaluated at week 0 (baseline), week 1, and week 4. The primary outcome measure was the change from baseline shoulder pain, measured by Visual Analogue Scale at 7 days after treatment. Secondary outcome measures include the (i) function of shoulder joint and (ii) McGill pain questionnaire. The results showed that patients in acupuncture group had better pain relief and function recovery compared with control group (P < 0.05) at 1 week after treatment. Moreover, there were statistical differences between two groups in VAS and shoulder joint function and McGill pain questionnaire at 4 weeks after treatment (P < 0.05). Therefore, the sharp-hook acupuncture helps to relieve the pain and restore the shoulder function for patients with periarthritis of shoulder.

13.
Proc Natl Acad Sci U S A ; 112(40): 12528-33, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26392562

ABSTRACT

Nav channels are essential for metazoan membrane depolarization, and Nav channel dysfunction is directly linked with epilepsy, ataxia, pain, arrhythmia, myotonia, and irritable bowel syndrome. Human Nav channelopathies are primarily caused by variants that directly affect Nav channel permeability or gating. However, a new class of human Nav channelopathies has emerged based on channel variants that alter regulation by intracellular signaling or cytoskeletal proteins. Fibroblast growth factor homologous factors (FHFs) are a family of intracellular signaling proteins linked with Nav channel regulation in neurons and myocytes. However, to date, there is surprisingly little evidence linking Nav channel gene variants with FHFs and human disease. Here, we provide, to our knowledge, the first evidence that mutations in SCN5A (encodes primary cardiac Nav channel Nav1.5) that alter FHF binding result in human cardiovascular disease. We describe a five*generation kindred with a history of atrial and ventricular arrhythmias, cardiac arrest, and sudden cardiac death. Affected family members harbor a novel SCN5A variant resulting in p.H1849R. p.H1849R is localized in the central binding core on Nav1.5 for FHFs. Consistent with these data, Nav1.5 p.H1849R affected interaction with FHFs. Further, electrophysiological analysis identified Nav1.5 p.H1849R as a gain-of-function for INa by altering steady-state inactivation and slowing the rate of Nav1.5 inactivation. In line with these data and consistent with human cardiac phenotypes, myocytes expressing Nav1.5 p.H1849R displayed prolonged action potential duration and arrhythmogenic afterdepolarizations. Together, these findings identify a previously unexplored mechanism for human Nav channelopathy based on altered Nav1.5 association with FHF proteins.


Subject(s)
Arrhythmias, Cardiac/genetics , Fibroblast Growth Factors/metabolism , Mutation, Missense , NAV1.5 Voltage-Gated Sodium Channel/genetics , Action Potentials/genetics , Action Potentials/physiology , Animals , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Cells, Cultured , Channelopathies/genetics , Channelopathies/metabolism , Channelopathies/physiopathology , Family Health , Female , Genetic Predisposition to Disease/genetics , HEK293 Cells , Humans , Immunoblotting , Male , Mice, Inbred C57BL , Mice, Transgenic , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Patch-Clamp Techniques , Pedigree , Protein Binding
14.
J Biomed Opt ; 20(12): 121303, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26220210

ABSTRACT

Hyperspectral reflectance imaging technique has been used for in vivo detection of cervical intraepithelial neoplasia. However, the clinical outcome of this technique is suboptimal owing to multiple limitations such as nonuniform illumination, high-cost and bulky setup, and time-consuming data acquisition and processing. To overcome these limitations, we acquired the hyperspectral data cube in a wavelength ranging from 600 to 800 nm and processed it by a wide gap second derivative analysis method. This method effectively reduced the image artifacts caused by nonuniform illumination and background absorption. Furthermore, with second derivative analysis, only three specific wavelengths (620, 696, and 772 nm) are needed for tissue classification with optimal separability. Clinical feasibility of the proposed image analysis and classification method was tested in a clinical trial where cervical hyperspectral images from three patients were used for classification analysis. Our proposed method successfully classified the cervix tissue into three categories of normal, inflammation and high-grade lesion. These classification results were coincident with those by an experienced gynecology oncologist after applying acetic acid. Our preliminary clinical study has demonstrated the technical feasibility for in vivo and noninvasive detection of cervical neoplasia without acetic acid. Further clinical research is needed in order to establish a large-scale diagnostic database and optimize the tissue classification technique.


Subject(s)
Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Microscopy/methods , Spectrum Analysis/methods , Uterine Cervical Dysplasia/pathology , Uterine Cervical Neoplasms/pathology , Algorithms , Female , Humans , Reproducibility of Results , Sensitivity and Specificity
15.
Elife ; 3: e04193, 2014 Sep 30.
Article in English | MEDLINE | ID: mdl-25269146

ABSTRACT

Rapid firing of cerebellar Purkinje neurons is facilitated in part by a voltage-gated Na(+) (NaV) 'resurgent' current, which allows renewed Na(+) influx during membrane repolarization. Resurgent current results from unbinding of a blocking particle that competes with normal channel inactivation. The underlying molecular components contributing to resurgent current have not been fully identified. In this study, we show that the NaV channel auxiliary subunit FGF14 'b' isoform, a locus for inherited spinocerebellar ataxias, controls resurgent current and repetitive firing in Purkinje neurons. FGF14 knockdown biased NaV channels towards the inactivated state by decreasing channel availability, diminishing the 'late' NaV current, and accelerating channel inactivation rate, thereby reducing resurgent current and repetitive spiking. Critical for these effects was both the alternatively spliced FGF14b N-terminus and direct interaction between FGF14b and the NaV C-terminus. Together, these data suggest that the FGF14b N-terminus is a potent regulator of resurgent NaV current in cerebellar Purkinje neurons.


Subject(s)
Cerebellum/cytology , Fibroblast Growth Factors/metabolism , Purkinje Cells/metabolism , Sodium Channels/metabolism , Action Potentials , Animals , Fibroblast Growth Factors/chemistry , Genes, Dominant , Ion Channel Gating , Kinetics , Mice, Inbred C57BL , Mutant Proteins/metabolism , Protein Binding , RNA, Small Interfering/metabolism
16.
Nat Commun ; 5: 4896, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-25232683

ABSTRACT

Ca(2+) regulates voltage-gated Na(+) (NaV) channels, and perturbed Ca(2+) regulation of NaV function is associated with epilepsy syndromes, autism and cardiac arrhythmias. Understanding the disease mechanisms, however, has been hindered by a lack of structural information and competing models for how Ca(2+) affects NaV channel function. Here we report the crystal structures of two ternary complexes of a human NaV cytosolic C-terminal domain (CTD), a fibroblast growth factor homologous factor and Ca(2+)/calmodulin (Ca(2+)/CaM). These structures rule out direct binding of Ca(2+) to the NaV CTD and uncover new contacts between CaM and the NaV CTD. Probing these new contacts with biochemical and functional experiments allows us to propose a mechanism by which Ca(2+) could regulate NaV channels. Further, our model provides hints towards understanding the molecular basis of the neurologic disorders and cardiac arrhythmias caused by NaV channel mutations.


Subject(s)
Calcium/chemistry , Calmodulin/chemistry , NAV1.5 Voltage-Gated Sodium Channel/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Cytosol/metabolism , Fibroblast Growth Factors/chemistry , Humans , Kinetics , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , NAV1.2 Voltage-Gated Sodium Channel/chemistry , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Sequence Homology, Amino Acid
17.
Heart Rhythm ; 10(12): 1886-94, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24096171

ABSTRACT

BACKGROUND: Less than 30% of the cases of Brugada syndrome (BrS) have an identified genetic cause. Of the known BrS-susceptibility genes, loss-of-function mutations in SCN5A or CACNA1C and their auxiliary subunits are most common. On the basis of the recent demonstration that fibroblast growth factor (FGF) homologous factors (FHFs; FGF11-FGF14) regulate cardiac Na(+) and Ca(2+) channel currents, we hypothesized that FHFs are candidate BrS loci. OBJECTIVE: The goal of this study was to test whether FGF12 is a candidate BrS locus. METHODS: We used quantitative polymerase chain reaction to identify the major FHF expressed in the human ventricle and then queried a phenotype-positive, genotype-negative BrS biorepository for FHF mutations associated with BrS. We queried the effects of an identified mutant with biochemical analyses combined with electrophysiological assessment. We designed a novel rat ventricular cardiomyocyte system in which we swapped the endogenous FHF with the identified mutant and defined its effects on multiple ionic currents in their native milieu and on the cardiac action potential. RESULTS: We identified FGF12 as the major FHF expressed in the human ventricle. In 102 individuals in the biorepository, we identified a single missense mutation in FGF12-B (Q7R-FGF12). The mutant reduced binding to the NaV1.5 C terminus, but not to junctophilin-2. In adult rat cardiac myocytes, Q7R-FGF12, but not wild-type FGF12, reduced Na(+) channel current density and availability without affecting Ca(2+) channel function. Furthermore, the mutant, but not wild-type FGF12, reduced action potential amplitude, which is consistent with a mutant-induced loss of Na(+) channel function. CONCLUSIONS: These multilevel investigations strongly suggest that Q7R-FGF12 is a disease-associated BrS mutation. Moreover, these data suggest for the first time that FHF effects on Na(+) and Ca(2+) channels are separable. Most significantly, this study establishes a new method to analyze effects of human arrhythmogenic mutations on cardiac ionic currents.


Subject(s)
Brugada Syndrome/genetics , DNA/genetics , Fibroblast Growth Factors/genetics , Mutation, Missense , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Brugada Syndrome/metabolism , Brugada Syndrome/pathology , Cells, Cultured , Child , Chromatography, High Pressure Liquid , DNA Mutational Analysis , Disease Models, Animal , Electrocardiography , Female , Fibroblast Growth Factors/metabolism , Humans , Immunohistochemistry , Male , Middle Aged , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Phenotype , Rats , Rats, Sprague-Dawley , Young Adult
18.
Structure ; 20(7): 1167-76, 2012 Jul 03.
Article in English | MEDLINE | ID: mdl-22705208

ABSTRACT

Voltage-gated Na⁺ (Na(V)) channels initiate neuronal action potentials. Na(V) channels are composed of a transmembrane domain responsible for voltage-dependent Na⁺ conduction and a cytosolic C-terminal domain (CTD) that regulates channel function through interactions with many auxiliary proteins, including fibroblast growth factor homologous factors (FHFs) and calmodulin (CaM). Most ion channel structural studies have focused on mechanisms of permeation and voltage-dependent gating but less is known about how intracellular domains modulate channel function. Here we report the crystal structure of the ternary complex of a human Na(V) CTD, an FHF, and Ca²âº-free CaM at 2.2 Å. Combined with functional experiments based on structural insights, we present a platform for understanding the roles of these auxiliary proteins in Na(V) channel regulation and the molecular basis of mutations that lead to neuronal and cardiac diseases. Furthermore, we identify a critical interaction that contributes to the specificity of individual Na(V) CTD isoforms for distinctive FHFs.


Subject(s)
Calcium/metabolism , Calmodulin/chemistry , Fibroblast Growth Factors/chemistry , Sodium Channels/chemistry , Action Potentials/physiology , Amino Acid Sequence , Binding Sites , Calmodulin/genetics , Calmodulin/metabolism , Calorimetry , Crystallography, X-Ray , Escherichia coli , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Mutation , NAV1.5 Voltage-Gated Sodium Channel , Plasmids , Protein Binding , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sodium Channels/genetics , Sodium Channels/metabolism , Structure-Activity Relationship
19.
Circ Res ; 109(7): 775-82, 2011 Sep 16.
Article in English | MEDLINE | ID: mdl-21817159

ABSTRACT

RATIONALE: Fibroblast growth factor homologous factors (FHFs), a subfamily of fibroblast growth factors (FGFs) that are incapable of functioning as growth factors, are intracellular modulators of Na(+) channels and have been linked to neurodegenerative diseases. Although certain FHFs have been found in embryonic heart, they have not been reported in adult heart, and they have not been shown to regulate endogenous cardiac Na(+) channels or to participate in cardiac pathophysiology. OBJECTIVE: We tested whether FHFs regulate Na(+) channels in murine heart. METHODS AND RESULTS: We demonstrated that isoforms of FGF13 are the predominant FHFs in adult mouse ventricular myocytes. FGF13 binds directly to, and colocalizes with, the Na(V)1.5 Na(+) channel in the sarcolemma of adult mouse ventricular myocytes. Knockdown of FGF13 in adult mouse ventricular myocytes revealed a loss of function of Na(V)1.5-reduced Na(+) current density, decreased Na(+) channel availability, and slowed Na(V)1.5-reduced Na(+) current recovery from inactivation. Cell surface biotinylation experiments showed ≈45% reduction in Na(V)1.5 protein at the sarcolemma after FGF13 knockdown, whereas no changes in whole-cell Na(V)1.5 protein or in mRNA level were observed. Optical imaging in neonatal rat ventricular myocyte monolayers demonstrated slowed conduction velocity and a reduced maximum capture rate after FGF13 knockdown. CONCLUSION: These findings show that FHFs are potent regulators of Na(+) channels in adult ventricular myocytes and suggest that loss-of-function mutations in FHFs may underlie a similar set of cardiac arrhythmias and cardiomyopathies that result from Na(V)1.5 loss-of-function mutations.


Subject(s)
Fibroblast Growth Factors/metabolism , Heart Ventricles/metabolism , Ion Channel Gating , Myocytes, Cardiac/metabolism , Sodium Channels/metabolism , Sodium/metabolism , Action Potentials , Animals , Animals, Newborn , Biotinylation , Cells, Cultured , Fibroblast Growth Factors/genetics , Kinetics , Mice , Mice, Inbred C57BL , Mutation , NAV1.5 Voltage-Gated Sodium Channel , Patch-Clamp Techniques , Protein Binding , RNA Interference , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Sarcolemma/metabolism , Sodium Channels/genetics , Transfection , Voltage-Sensitive Dye Imaging
20.
J Biol Chem ; 286(27): 24253-63, 2011 Jul 08.
Article in English | MEDLINE | ID: mdl-21566136

ABSTRACT

Fibroblast growth factor homologous factors (FHFs, FGF11-14) bind to the C termini (CTs) of specific voltage-gated sodium channels (VGSC) and thereby regulate their function. The effect of an individual FHF on a specific VGSC varies greatly depending upon the individual FHF isoform. How individual FHFs impart distinctive effects on specific VGSCs is not known and the specificity of these pairwise interactions is not understood. Using several biochemical approaches combined with functional analysis, we mapped the interaction site for FGF12B on the Na(V)1.5 C terminus and discovered previously unknown determinants necessary for FGF12 interaction. Also, we demonstrated that FGF12B binds to some, but not all Na(V)1 CTs, suggesting specificity of interaction. Exploiting a human single nucleotide polymorphism in the core domain of FGF12 (P149Q), we identified a surface proline that contributes a part of this pairwise specificity. This proline is conserved among all FHFs, and mutation of the homologous residue in FGF13 also leads to loss of interaction with a specific VGSC CT (Na(V)1.1) and loss of modulation of the resultant Na(+) channel function. We hypothesized that some of the specificity mediated by this proline may result from differences in the affinity of the binding partners. Consistent with this hypothesis, surface plasmon resonance data showed that the P149Q mutation decreased the binding affinity between FHFs and VGSC CTs. Moreover, immunocytochemistry revealed that the mutation prevented proper subcellular targeting of FGF12 to the axon initial segment in neurons. Together, these results give new insights into details of the interactions between FHFs and Na(V)1.x CTs, and the consequent regulation of Na(+) channels.


Subject(s)
Fibroblast Growth Factors/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Sodium Channels/metabolism , Amino Acid Substitution , Fibroblast Growth Factors/genetics , HEK293 Cells , Humans , Mutation, Missense , NAV1.1 Voltage-Gated Sodium Channel , NAV1.5 Voltage-Gated Sodium Channel , Nerve Tissue Proteins/genetics , Polymorphism, Single Nucleotide , Protein Structure, Tertiary , Sodium Channels/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...