Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroinflammation ; 21(1): 148, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840180

ABSTRACT

BACKGROUND: White matter injury (WMI) represents a significant etiological factor contributing to neurological impairment subsequent to Traumatic Brain Injury (TBI). CD36 receptors are recognized as pivotal participants in the pathogenesis of neurological disorders, including stroke and spinal cord injury. Furthermore, dynamic fluctuations in the phenotypic polarization of microglial cells have been intimately associated with the regenerative processes within the injured tissue following TBI. Nevertheless, there is a paucity of research addressing the impact of CD36 receptors on WMI and microglial polarization. This investigation aims to elucidate the functional role and mechanistic underpinnings of CD36 in modulating microglial polarization and WMI following TBI. METHODS: TBI models were induced in murine subjects via controlled cortical impact (CCI). The spatiotemporal patterns of CD36 expression were examined through quantitative polymerase chain reaction (qPCR), Western blot analysis, and immunofluorescence staining. The extent of white matter injury was assessed via transmission electron microscopy, Luxol Fast Blue (LFB) staining, and immunofluorescence staining. Transcriptome sequencing was employed to dissect the molecular mechanisms underlying CD36 down-regulation and its influence on white matter damage. Microglial polarization status was ascertained using qPCR, Western blot analysis, and immunofluorescence staining. In vitro, a Transwell co-culture system was employed to investigate the impact of CD36-dependent microglial polarization on oligodendrocytes subjected to oxygen-glucose deprivation (OGD). RESULTS: Western blot and qPCR analyses revealed that CD36 expression reached its zenith at 7 days post-TBI and remained sustained at this level thereafter. Immunofluorescence staining exhibited robust CD36 expression in astrocytes and microglia following TBI. Genetic deletion of CD36 ameliorated TBI-induced white matter injury, as evidenced by a reduced SMI-32/MBP ratio and G-ratio. Transcriptome sequencing unveiled differentially expressed genes enriched in processes linked to microglial activation, regulation of neuroinflammation, and the TNF signaling pathway. Additionally, bioinformatics analysis pinpointed the Traf5-p38 axis as a critical signaling pathway. In vivo and in vitro experiments indicated that inhibition of the CD36-Traf5-MAPK axis curtailed microglial polarization toward the pro-inflammatory phenotype. In a Transwell co-culture system, BV2 cells treated with LPS + IFN-γ exacerbated the damage of post-OGD oligodendrocytes, which could be rectified through CD36 knockdown in BV2 cells. CONCLUSIONS: This study illuminates that the suppression of CD36 mitigates WMI by constraining microglial polarization towards the pro-inflammatory phenotype through the down-regulation of the Traf5-MAPK signaling pathway. Our findings present a potential therapeutic strategy for averting neuroinflammatory responses and ensuing WMI damage resulting from TBI.


Subject(s)
CD36 Antigens , Mice, Inbred C57BL , Microglia , Animals , Microglia/metabolism , Microglia/pathology , Mice , CD36 Antigens/metabolism , CD36 Antigens/genetics , Mice, Knockout , White Matter/pathology , White Matter/metabolism , MAP Kinase Signaling System/physiology , Male , Cell Polarity/physiology , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Signal Transduction/physiology
2.
Front Neurol ; 14: 1165059, 2023.
Article in English | MEDLINE | ID: mdl-37456644

ABSTRACT

Background: It is widely accepted that traumatic brain injury (TBI) increases the risk of developing long-term dementia, although some controversies surrounding this topic exist. Annually, approximately 69 million individuals suffer from TBI all around the world. Such a large population of TBI patients could lead to a future surge in the number of dementia patients. Due to the potentially severe consequences of TBI, various research projects on post-TBI dementia have emerged worldwide. Therefore, it is essential to comprehend the current status and development of post-TBI dementia for future research. Objective: The purpose of the study was to provide an overview of the field and identify hotspots, research frontiers, and future research trends for post-TBI dementia. Methods: Articles related to post-TBI dementia were retrieved from the Web of Science Core Collection for the period between 2007 and 2022, and analyzing them based on factors such as citations, authors, institutions, countries, journals, keywords, and references. Data analysis and visualization were conducted using VOSviewer, CiteSpace, and an online bibliometric platform (https://bibliometric.com). Results: From 2007 to 2022, we obtained a total of 727 articles from 3,780 authors and 1,126 institutions across 52 countries, published in 262 journals. These articles received a total of 29,353 citations, citing 25,713 references from 3,921 journals. Over the last 15 years, there has been a significant upward trend in both publications and citations. The most productive country was the United States, the most productive institution was Boston University, and the most productive author was McKee AC. Journal of Neurotrauma has been identified as the periodical with the greatest number of publications. Three clusters were identified through cluster analysis of keywords. A burst in the use of the term "outcome" in 2019 is indicative of a future research hotspot. The timeline view of references showed 14 clusters, of which the first 4 clusters collected the majority of papers. The first 4 clusters were "chronic traumatic encephalopathy," "age of onset," "tauopathy," and "cognitive decline," respectively, suggesting some areas of interest in the field. Conclusion: The subject of post-TBI dementia has raised much interest from scientists. Notably, America is at the forefront of research in this area. Further collaborative research between different countries is imperative. Two topical issues in this field are "The association between TBI and dementia-related alterations" and "chronic traumatic encephalopathy (CTE)." Studies on clinical manifestation, therapy, pathology, and pathogenic mechanisms are also popular in the field.

3.
Clin Lab ; 66(9)2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32902234

ABSTRACT

BACKGROUND: The current study aims to identify the expression of serum miR-153-3p in knee osteoarthritis (KOA) patients, thereby evaluating its diagnostic value in clinic. METHODS: The KOA group was divided into mild group, moderate group, and severe group according to the Kellgren Lawrence (K-L) classification. RT-PCR was used to determine the level of serum miR-153-3p. The relationship between serum miR-153-3p level and C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) was analyzed by Pearson's correlation assay. The possible target gene of miR-153-3p was predicted by TargetScan and validated using dual-luciferase reporter assay. RESULTS: The serum miR-153-3p levels of KOA patients in mild, moderate, and severe groups were significantly higher than those in the control group. A positive correlation was found between the serum miR-153-3p level and ESR/CRP levels. ROC analysis showed that serum miR-153-3p could differentiate KOA patients from controls. Based on TargetScan, a conserved binding site was identified in the 3'UTR of SOST and miR-153-3p significantly suppressed the relative luciferase activity of pmirGLO-SOST-3'UTR. Further study showed that the serum SOST levels of patients with KOA were significantly lower than that of the control group. Pearson's correlation assay showed a negative correlation between serum miR-153-3p and serum SOST levels. CONCLUSIONS: Collectively, enhanced serum miR-153-3p level promoted the progression of KOA by suppressing SOST. Hence, serum miR-153-3p may be a useful biomarker and therapeutic target in patients with KOA.


Subject(s)
MicroRNAs , Osteoarthritis, Knee , 3' Untranslated Regions , Adaptor Proteins, Signal Transducing , Biomarkers , Humans , MicroRNAs/genetics , Osteoarthritis, Knee/diagnosis , Osteoarthritis, Knee/genetics , ROC Curve
4.
Macromolecules ; 49(19)2016.
Article in English | MEDLINE | ID: mdl-38495414

ABSTRACT

Trimethylsilylated silicate nanoparticle (termed MQ resin, combining M Me3SiO1/2 and Q SiO4/2 units)/poly(styrene-block-polydimethylsiloxane) (PS-PDMS, 31K-15K, polydispersity PD = 1.15, weight-average molecular weight Mw = 45.5K) blends behave similarly to block copolymers with different PS/PDMS ratios. MQ is localized in the PDMS phase virtually extending the volume fraction in the block copolymer. This allows for microdomain morphology control beyond what can be achieved with the starting block copolymer. Synthesizing siloxane-containing block copolymers targeted at certain equilibrium morphologies can be time-consuming and in some cases technically challenging. This work shows that MQ is a robust morphology modifier, not limited by the occurrence of surface segregation and the high diffusion rates typically associated with homopolymer modification, as confirmed by looking at the PDMS/PS-PDMS reference. The convenient and robust structure control MQ nanoparticle modification of PS-PDMS provides could overcome one of the hurdles to adoption of block copolymer lithography.

5.
ACS Nano ; 8(8): 8426-37, 2014 Aug 26.
Article in English | MEDLINE | ID: mdl-25075449

ABSTRACT

The directed self-assembly (DSA) of block copolymers (BCP) is an emerging resolution enhancement tool that can multiply or subdivide the pitch of a lithographically defined chemical or topological pattern and is a resolution enhancement candidate to augment conventional lithography for patterning sub-20 nm features. Continuing the development of this technology will require an improved understanding of the polymer physics involved as well as experimental confirmation of the simulations used to guide the design process. Both of these endeavors would be greatly facilitated by a metrology, which is capable of probing the internal morphology of a DSA film. We have developed a new measurement technique, resonant critical-dimension small-angle X-ray scattering (res-CDSAXS), to evaluate the 3D buried features inside the film. This is an X-ray scattering measurement where the sample angle is varied to probe the 3D structure of the film, while resonant soft X-rays are used to enhance the scattering contrast. By measuring the same sample with both res-CDSAXS and traditional CDSAXS (with hard X-rays), we are able to demonstrate the dramatic improvement in scattering obtained through the use of resonant soft X-rays. Analysis of the reciprocal space map constructed from the res-CDSAXS measurements allowed us to reconstruct the complex buried features in DSA BCP films. We studied a series of DSA BCP films with varying template widths, and the internal morphologies for these samples were compared to the results of single chain in mean-field simulations. The measurements revealed a range of morphologies that occur with changing template width, including results that suggest the presence of mixed morphologies composed of both whole and necking lamella. The development of res-CDSAXS will enable a better understanding of the fundamental physics behind the formation of buried features in DSA BCP films.

6.
ACS Macro Lett ; 1(11): 1244-1248, 2012 Nov 20.
Article in English | MEDLINE | ID: mdl-35607148

ABSTRACT

The depth-dependent structure of a poly(styrene-b-methylmethacrylate) (PS-PMMA) line grating (46 nm pitch) was calculated from quantitative analysis of small-angle X-ray scattering profiles. These data demonstrate that domain shapes are significantly deformed near the substrate interface, where the local PS domain shape resembles an hourglass. The bulk equilibrium dimension is recovered near the center of a 64 nm thick film. Simulations based on self-consistent field theory suggest that deformations near the substrate are caused by extensive penetration of the copolymer domains into the underlying substrate coating (a PS-brush). These findings suggest that new coatings for block copolymer directed self-assembly should consider copolymer penetration lengths in addition to tailoring surface energetics. Furthermore, given the resolution and ensemble-averaging features of synchrotron X-ray scattering, we argue that it has the potential to emerge as a "gold-standard" or "benchmark" dimensional metrology and library validation tool for high density, sub-10 nm features.

SELECTION OF CITATIONS
SEARCH DETAIL
...