Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 12: e17475, 2024.
Article in English | MEDLINE | ID: mdl-38827300

ABSTRACT

Fertilization plays a crucial role in ensuring global food security and ecological balance. This study investigated the impact of substituting innovative biological manure for chemical fertilization on rice (Oryza sativa L) productivity and soil biochemical properties based on a three-year experiment. Our results suggested rice yield and straw weight were increased under manure addition treatment. Specifically, 70% of total nitrogen (N) fertilizer substituted by biological manure derived from straw, animal waste and microbiome, led to a substantial 13.6% increase in rice yield and a remarkable 34.2% boost in straw weight. In comparison to the conventional local farmer practice of applying 165 kg N ha-1, adopting 70% of total N plus biological manure demonstrated superior outcomes, particularly in enhancing yield components and spike morphology. Fertilization treatments led to elevated levels of soil microbial biomass carbon and N. However, a nuanced comparison with local practices indicated that applying biological manure alongside urea resulted in a slight reduction in N content in vegetative and economic organs, along with decreases of 10.4%, 11.2%, and 6.1% in N recovery efficiency (NRE), respectively. Prudent N management through the judicious application of partial biological manure fertilizer in rice systems could be imperative for sustaining productivity and soil fertility in southern China.


Subject(s)
Fertilizers , Manure , Nitrogen , Oryza , Soil , Nitrogen/metabolism , Nitrogen/analysis , Manure/analysis , Fertilizers/analysis , Oryza/growth & development , Oryza/metabolism , Soil/chemistry , China , Agriculture/methods , Soil Microbiology , Biomass , Animals , Edible Grain/growth & development , Edible Grain/metabolism
2.
IEEE Trans Vis Comput Graph ; 29(12): 5033-5049, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36040948

ABSTRACT

Arguably the most representative application of artificial intelligence, autonomous driving systems usually rely on computer vision techniques to detect the situations of the external environment. Object detection underpins the ability of scene understanding in such systems. However, existing object detection algorithms often behave as a black box, so when a model fails, no information is available on When, Where and How the failure happened. In this paper, we propose a visual analytics approach to help model developers interpret the model failures. The system includes the micro- and macro-interpreting modules to address the interpretability problem of object detection in autonomous driving. The micro-interpreting module extracts and visualizes the features of a convolutional neural network (CNN) algorithm with density maps, while the macro-interpreting module provides spatial-temporal information of an autonomous driving vehicle and its environment. With the situation awareness of the spatial, temporal and neural network information, our system facilitates the understanding of the results of object detection algorithms, and helps the model developers better understand, tune and develop the models. We use real-world autonomous driving data to perform case studies by involving domain experts in computer vision and autonomous driving to evaluate our system. The results from our interviews with them show the effectiveness of our approach.

3.
IEEE Trans Vis Comput Graph ; 28(1): 1030-1039, 2022 01.
Article in English | MEDLINE | ID: mdl-34723804

ABSTRACT

Autonomous driving technologies often use state-of-the-art artificial intelligence algorithms to understand the relationship between the vehicle and the external environment, to predict the changes of the environment, and then to plan and control the behaviors of the vehicle accordingly. The complexity of such technologies makes it challenging to evaluate the performance of autonomous driving systems and to find ways to improve them. The current approaches to evaluating such autonomous driving systems largely use a single score to indicate the overall performance of a system, but domain experts have difficulties in understanding how individual components or algorithms in an autonomous driving system may contribute to the score. To address this problem, we collaborate with domain experts on autonomous driving algorithms, and propose a visual evaluation method for autonomous driving. Our method considers the data generated in all components during the whole process of autonomous driving, including perception results, planning routes, prediction of obstacles, various controlling parameters, and evaluation of comfort. We develop a visual analytics workflow to integrate an evaluation mathematical model with adjustable parameters, support the evaluation of the system from the level of the overall performance to the level of detailed measures of individual components, and to show both evaluation scores and their contributing factors. Our implemented visual analytics system provides an overview evaluation score at the beginning and shows the animation of the dynamic change of the scores at each period. Experts can interactively explore the specific component at different time periods and identify related factors. With our method, domain experts not only learn about the performance of an autonomous driving system, but also identify and access the problematic parts of each component. Our visual evaluation system can be applied to the autonomous driving simulation system and used for various evaluation cases. The results of using our system in some simulation cases and the feedback from involved domain experts confirm the usefulness and efficiency of our method in helping people gain in-depth insight into autonomous driving systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...