Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Sci Total Environ ; 941: 173767, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844220

ABSTRACT

Epidemiologic studies have reported the relationships between perfluoroalkyl substances (PFASs) and breast cancer incidence, yet the underlying mechanisms are not well understood. This study aimed to elucidate the mediation role of mitochondrial DNA copy number (mtDNAcn) in the relationships between PFASs exposure and breast cancer risk. We conducted a case-cohort study within the Dongfeng-Tongji cohort, involving 226 incident breast cancer cases and a random sub-cohort (n = 990). Their plasma concentrations of six PFASs [including perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroheptanoic acid (PFHpA), perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS)], and peripheral blood levels of mtDNAcn, were detected at baseline by using ultraperformance liquid chromatography-tandem mass spectrometry and quantitative real-time PCR, respectively. Linear regression and Barlow-weighted Cox models were employed separately to assess the relationships of mtDNAcn with PFASs and breast cancer risk. Mediation analysis was further conducted to quantify the mediating effects of mtDNAcn on PFAS-breast cancer relationships. We observed increased blood mtDNAcn levels among participants with the highest PFNA and PFHpA exposure [Q4 vs. Q1, ß(95%CI) = 0.092(0.022, 0.162) and 0.091(0.022, 0.160), respectively], while no significant associations were observed of PFOA, PFDA, PFOS, or PFHxS with mtDNAcn. Compared to participants within the lowest quartile subgroup of mtDNAcn, those with the highest mtDNAcn levels exhibited a significantly increased risk of breast cancer and postmenopausal breast cancer [Q4 vs. Q1, HR(95%CI) = 3.34(1.80, 6.20) and 3.71(1.89, 7.31)]. Furthermore, mtDNAcn could mediate 14.6 % of the PFHpA-breast cancer relationship [Indirect effect, HR(95%CI) = 1.02(1.00, 1.05)]. Our study unveiled the relationships of PFNA and the short-chain PFHpA with mtDNAcn and the mediation role of mtDNAcn in the PFHpA-breast cancer association. These findings provided insights into the potential biological mechanisms linking PFASs to breast cancer risk.

2.
J Hazard Mater ; 471: 134315, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38678703

ABSTRACT

Mosaic loss of chromosome Y (mLOY) is the most common somatic alteration as men aging and may reflect genome instability. PM exposure is a major health concern worldwide, but its effects with genetic factors on mLOY has never been investigated. Here we explored the associations of PM2.5 and PM10 exposure with mLOY of 10,158 males measured via signal intensity of 2186 probes in male-specific chromosome-Y region from Illumina array data. The interactive and joint effects of PM2.5 and PM10 with genetic factors and smoking on mLOY were further evaluated. Compared with the lowest tertiles of PM2.5 levels in each exposure window, the highest tertiles in the same day, 7-, 14-, 21-, and 28-day showed a 0.005, 0.006, 0.007, 0.007, and 0.006 decrease in mLRR-Y, respectively (all P < 0.05), with adjustment for age, BMI, smoking pack-years, alcohol drinking status, physical activity, education levels, season of blood draw, and experimental batch. Such adverse effects were also observed in PM10-mLOY associations. Moreover, the unweighted and weighted PRS presented significant negative associations with mLRR-Y (both P < 0.001). Participants with high PRS and high PM2.5 or PM10 exposure in the 28-day separately showed a 0.018 or 0.019 lower mLRR-Y level [ß (95 %CI) = -0.018 (-0.023, -0.012) and - 0.019 (-0.025, -0.014), respectively, both P < 0.001], when compared to those with low PRS and low PM2.5 or PM10 exposure. We also observed joint effects of PM with smoking on exacerbated mLOY. This large study is the first to elucidate the impacts of PM2.5 exposure on mLOY, and provides key evidence regarding the interactive and joint effects of PM with genetic factors on mLOY, which may promote understanding of mLOY development, further modifying and increasing healthy aging in males.


Subject(s)
Chromosomes, Human, Y , Particulate Matter , Male , Humans , Particulate Matter/toxicity , Middle Aged , Aged , Cohort Studies , Mosaicism , Air Pollutants/toxicity , China , Environmental Exposure/adverse effects , Smoking , Multifactorial Inheritance , Air Pollution/adverse effects , Risk Factors , Genetic Risk Score
3.
Environ Res ; 250: 118539, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38401684

ABSTRACT

The relationship of exposure to benzo[a]pyrene (BaP) with lung cancer risk has been firmly established, but whether this association could be modified by other environmental or genetic factors remains to be explored. To investigate whether and how zinc (Zn) and genetic predisposition modify the association between BaP and lung cancer, we performed a case-cohort study with a 5.4-year median follow-up duration, comprising a representative subcohort of 1399 participants and 359 incident lung cancer cases. The baseline concentrations of benzo[a]pyrene diol epoxide-albumin adduct (BPDE-Alb) and Zn were quantified. We also genotyped the participants and computed the polygenic risk score (PRS) for lung cancer. Our findings indicated that elevated BPDE-Alb and PRS were linked to increased lung cancer risk, with the HR (95%CI) of 1.54 (1.36, 1.74) per SD increment in ln-transformed BPDE-Alb and 1.27 (1.14, 1.41) per SD increment in PRS, but high plasma Zn level was linked to a lower lung cancer risk [HR (95%CI)=0.77 (0.66, 0.91) per SD increment in ln-transformed Zn]. There was evidence of effect modification by Zn on BaP-lung cancer association (P for multiplicative interaction = 0.008). As Zn concentrations increased from the lowest to the highest tertile, the lung cancer risk per SD increment in ln-transformed BPDE-Alb decreased from 2.07 (1.48, 2.89) to 1.33 (0.90, 1.95). Additionally, we observed a significant synergistic interaction of BPDE-Alb and PRS [RERI (95%CI) = 0.85 (0.03, 1.67)], with 42% of the incident lung cancer cases among individuals with high BPDE-Alb and high PRS attributable to their additive effect [AP (95%CI) = 0.42 (0.14, 0.69)]. This study provided the first prospective epidemiological evidence that Zn has protective effect against BaP-induced lung tumorigenesis, whereas high genetic risk can enhance the harmful effect of BaP. These findings may provide novel insight into the environment-environment and environment-gene interaction underlying lung cancer development, which may help to develop prevention and intervention strategies to manage BaP-induced lung cancer.


Subject(s)
Benzo(a)pyrene , Lung Neoplasms , Zinc , Humans , Lung Neoplasms/genetics , Lung Neoplasms/chemically induced , Lung Neoplasms/epidemiology , Benzo(a)pyrene/toxicity , Zinc/blood , Middle Aged , Male , China/epidemiology , Female , Prospective Studies , Aged , Environmental Exposure/adverse effects , Genetic Predisposition to Disease , Risk Factors , Case-Control Studies , Adult , Genetic Risk Score , East Asian People
4.
J Phys Chem Lett ; 15(4): 1112-1120, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38262437

ABSTRACT

Quasi-two-dimensional (2D) perovskite light-emitting diodes are promising light sources for color display and lighting. However, poor carrier injection and transport between the bottom hole transport layer (HTL) and perovskite limit the device performance. Here we demonstrate a simple and effective way to modify the HTL for enhancing the performance of perovskite light-emitting diodes (PeLEDs). An electrolyte K2SO4 is used to mix with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as the hole transport layer. The K+ doping helped the quasi-2D perovskite phases grow vertically along the interface of the PEDOT:PSS, fine-modulate the phase distribution, and simultaneously reduce the defect density of quasi-2D perovskites. It also significantly reduced the exciton quenching and injection barrier at PEDOT:PSS and quasi-2D perovskite interface. The optimized green PeLEDs with the K2SO4 doped PEDOT:PSS HTL showed a maximum luminance of 17185 cd/m2 which is almost 4.7 times brighter than the control one, with a maximum external quantum efficiency of 18.64%.

5.
Ecotoxicol Environ Saf ; 271: 115980, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38262095

ABSTRACT

Epidemiologic studies have reported the positive relationship of benzo[a]pyrene (BaP) exposure with the risk of lung cancer. However, the mechanisms underlying the relationship is still unclear. Plasma microRNA (miRNA) is a typical epigenetic biomarker that was linked to environment exposure and lung cancer development. We aimed to reveal the mediation effect of plasma miRNAs on BaP-related lung cancer. We designed a lung cancer case-control study including 136 lung cancer patients and 136 controls, and measured the adducts of benzo[a]pyrene diol epoxide-albumin (BPDE-Alb) and sequenced miRNA profiles in plasma. The relationships between BPDE-Alb adducts, normalized miRNA levels and the risk of lung cancer were assessed by linear regression models. The mediation effects of miRNAs on BaP-related lung cancer were investigated. A total of 190 plasma miRNAs were significantly related to lung cancer status at Bonferroni adjusted P < 0.05, among which 57 miRNAs showed different levels with |fold change| > 2 between plasma samples before and after tumor resection surgery at Bonferroni adjusted P < 0.05. Especially, among the 57 lung cancer-associated miRNAs, BPDE-Alb adducts were significantly related to miR-17-3p, miR-20a-3p, miR-135a-5p, miR-374a-5p, miR-374b-5p, miR-423-5p and miR-664a-5p, which could in turn mediate a separate 42.2%, 33.0%, 57.5%, 36.4%, 48.8%, 32.5% and 38.2% of the relationship of BPDE-Alb adducts with the risk of lung cancer. Our results provide non-invasion biomarker candidates for lung cancer, and highlight miRNAs dysregulation as a potential intermediate mechanism by which BaP exposure lead to lung tumorigenesis.


Subject(s)
Lung Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , Benzo(a)pyrene/toxicity , 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/toxicity , Case-Control Studies , Lung , Biomarkers , China
6.
J Hazard Mater ; 465: 133200, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38113735

ABSTRACT

Humans were exposed to multiple metals, but the impact of metals on DNA methylation-age (DNAm-age), a well-recognized aging measure, remains inconclusive. This study included 2942 participants from the Dongfeng-Tongji cohort. We detected their plasma concentrations of 23 metals and determined their genome-wide DNA methylation using the Illumina Human-MethylationEPIC BeadChip. Five DNAm-age acceleration indexes (DAIs), including HannumAge-Accel, HorvathAge-Accel, PhenoAge-Accel, GrimAge-Accel (residual from regressing corresponding DNAm-age on chronological age) and DNAm-mortality score (DNAm-MS), were separately calculated. We found that each 1-unit increase in ln-transformed copper (Cu) was associated with a separate 1.02-, 0.83- and 0.07-unit increase in PhenoAge-Accel, GrimAge-Accel, and DNAm-MS (all FDR<0.05). Each 1-unit increase in ln-transformed nickel (Ni) was associated with a 0.34-year increase in PhenoAge-Accel, while each 1-unit increase in ln-transformed strontium (Sr) was associated with a 0.05-unit increase in DNAm-MS. The Cu, Ni and Sr showed joint positive effects on above three DAIs. PhenoAge-Accel, GrimAge-Accel, and DNAm-MS mediated a separate 6.5%, 12.3%, 6.0% of the positive association between Cu and all-cause mortality; GrimAge-Accel mediated 14.3% of the inverse association of selenium with all-cause mortality. Our findings revealed the effects of Cu, Ni, Sr and their co-exposure on accelerated aging and highlighted mediation roles of DNAm-age on metal-associated mortality.


Subject(s)
Aging , DNA Methylation , Humans , Cohort Studies , Metals , DNA , Nickel , Strontium , Epigenesis, Genetic
7.
BMC Geriatr ; 23(1): 79, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36747124

ABSTRACT

BACKGROUND: Frailty describes an age-related state of deterioration in biological function. This study aimed to investigate the association between frailty and cognitive function and its combined effects with lifestyles. METHODS: A total of 3,279 participants from the Dongfeng-Tongji (DFTJ) cohort were tested the cognitive function by using the Chinese version of Mini-mental State Examination (MMSE). Frailty was evaluated based on a 35-item frailty index (FI). Frailty status was dichotomized into robust (FI < 0.15) and frail (FI ≥ 0.15). Multivariate generalized linear regression models and logistic regression models were used to estimate the associations of frailty with MMSE score and cognitive impairment. We also analysed the modification and combined effects of lifestyle factors, including smoking status, drinking status, and regular physical exercise, on the above associations. RESULTS: FI was significantly associated with lower MMSE score [ß (95%Cl) = -0.28 (-0.43, -0.13)] and cognitive impairment [OR (95%Cl) = 1.19 (1.04, 1.35)]. The association of frailty status with MMSE were found to be stronger among ever smokers [ß(95%Cl) = -1.08 (-1.64, -0.51)] and physical inactive individuals [ß(95%Cl) = -1.59 (-2.63, -0.54)] while weaker or not significant among never smokers [ß(95%Cl) = -0.30 (-0.62, 0.01)] and physical active individuals [ß(95%Cl) = -0.37 (-0.65, -0.08))]. There were significant combined effects of frailty status with unhealthy lifestyles including smoking, alcohol drinking, and physical inactive on cognitive impairment. CONCLUSIONS: Frailty was associated with cognitive impairment among Chinese middle-aged and elderly people, while smoking cessation and regular physical exercise could attenuate the above associations, which highlight the potential preventive interventions.


Subject(s)
Cognitive Dysfunction , Frailty , Aged , Humans , Middle Aged , Frailty/diagnosis , Frailty/epidemiology , Frail Elderly/psychology , Cross-Sectional Studies , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/epidemiology , Cognition , Life Style , Geriatric Assessment
8.
Sci Total Environ ; 861: 160596, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36464054

ABSTRACT

Aging is related to a progressive decline in physiological functions and is affected by environmental factors. Metal exposures are linked with many health effects, but have poorly understood associations with aging. In this study, a total of 33,916 participants from the Dongfeng-Tongji cohort were included to establish biological age (BA) predictors by using recent advanced algorithms, Klemera and Doubal method (KDM) and Mahalanobis distance. Two biological aging indexes (BAIs), recorded as KDM-accel [the residual from regressing KDM-BA on chronological age] and physiological dysregulation (PD), were separately defined and tested on their associations with mortality by using Cox proportional hazard models. Among 3320 subjects with laboratory determinations of 23 metals in plasma, the individual and overall associations between these metals and BAIs were evaluated by using multiple-linear regression and weighted quantile sum (WQS) models. Both BAIs were prospectively associated with all-cause mortality among the whole participants [KDM-accel: HR(95%CI) = 1.23(1.18, 1.29); PD: HR(95%CI) = 1.37(1.31, 1.42)]. Each 1-unit increment in ln-transformed strontium and molybdenum were cross-sectionally associated with a separate 0.71- and 0.34-year increase in KDM-accel, and each 1 % increment in copper, rubidium, strontium, cobalt was cross-sectionally associated with a separate 0.10 %, 0.10 %, 0.09 %, 0.02 % increase in PD (all FDR < 0.05). The WQS models observed mixture effects of multi-metals on aging, with a 0.20-year increase in KDM-accel and a 0.04 % increase in PD for each quartile increase in ln-transformed concentrations of all metals [KDM-accel: ß(95%CI) = 0.20(0.08, 0.32); PD: ß(95%CI) = 0.04(0.02, 0.06)]. Our findings revealed that plasma strontium, molybdenum, copper, rubidium and cobalt were associated with accelerated aging. Multi-metals exposure showed mixture effects on the aging process, which highlights potential preventative interventions.


Subject(s)
Copper , Molybdenum , Humans , Rubidium , Metals/toxicity , Aging , Strontium , Cobalt
9.
Environ Res ; 216(Pt 1): 114509, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36208786

ABSTRACT

OBJECTIVE: Mitochondria are essential organelles that execute fundamental biological processes, while mitochondrial DNA is vulnerable to environmental insults. The aim of this study was to investigate the individual and mixture effect of plasma metals on blood mitochondria DNA copy number (mtDNAcn). METHODS: This study involved 1399 randomly selected subcohort participants from the Dongfeng-Tongji cohort. The blood mtDNAcn and plasma levels of 23 metals were determined by using quantitative real-time polymerase chain reaction (qPCR) and inductively coupled plasma mass spectrometer (ICP-MS), respectively. The multiple linear regression was used to explore the association between each metal and mtDNAcn, and the LASSO penalized regression was performed to select the most significant metals. We also used the quantile g-computation analysis to assess the mixture effect of multiple metals. RESULTS: Based on multiple linear regression models, each 1% increase in plasma concentration of copper (Cu), rubidium (Rb), and titanium (Ti) was associated with a separate 0.16% [ß(95% CI) = 0.158 (0.066, 0.249), P = 0.001], 0.20% [ß(95% CI) = 0.196 (0.073, 0.318), P = 0.002], and 0.25% [ß(95% CI) = 0.245 (0.081, 0.409), P = 0.003] increase in blood mtDNAcn. The LASSO regression also confirmed Cu, Rb, and Ti as significant predictors for mtDNAcn. There was a significant mixture effect of multiple metals on increasing mtDNAcn among the elder participants (aged ≥65), with an approximately 11% increase in mtDNAcn for each quartile increase in all metal concentrations [ß(95% CI) = 0.146 (0.048, 0.243), P = 0.004]. CONCLUSIONS: Our results show that plasma Cu, Rb and Ti were associated with increased blood mtDNA, and we further revealed a significant mixture effect of all metals on mtDNAcn among elder population. These findings may provide a novel perspective on the effect of metals on mitochondrial dysfunction.


Subject(s)
DNA Copy Number Variations , DNA, Mitochondrial , Humans , Aged , Cross-Sectional Studies , Mitochondria/genetics , Cohort Studies , Metals
10.
Mol Carcinog ; 62(2): 224-235, 2023 02.
Article in English | MEDLINE | ID: mdl-36250641

ABSTRACT

Epidemiological investigations implied that mitochondrial DNA copy number (mtDNAcn) variations could trigger predisposition to multiple cancers, but evidence regarding gastrointestinal cancers (GICs) was still uncertain. We conducted a case-cohort study within the prospective Dongfeng-Tongji cohort, including incident cases of colorectal cancer (CRC, n = 278), gastric cancer (GC, n = 138), and esophageal cancer (EC, n = 72) as well as a random subcohort (n = 1173), who were followed up from baseline to the end of 2018. We determined baseline blood mtDNAcn and associations of mtDNAcn with the GICs risks were estimated by using weighted Cox proportional hazards models. Significant U-shaped associations were observed between mtDNAcn and GICs risks. Compared to subjects within the second quartile (Q2) mtDNAcn subgroup, those within the 1st (Q1), 3rd (Q3), and 4th (Q4) quartile subgroups showed increased risks of CRC (hazard ratio [HR] [95% confidence interval, CI] = 2.27 [1.47-3.52], 1.65 [1.04-2.62], and 2.81 [1.85-4.28], respectively) and total GICs (HR [95%CI] = 1.84 [1.30-2.60], 1.47 [1.03-2.10], and 2.51 [1.82-3.47], respectively], and those within Q4 subgroup presented elevated GC and EC risks (HR [95% CI] = 2.16 [1.31-3.54] and 2.38 [1.13-5.02], respectively). Similar associations of mtDNAcn with CRC and total GICs risks remained in stratified analyzes by age, gender, smoking, and drinking status. This prospective case-cohort study showed U-shaped associations between mtDNAcn and GICs risks, but further research works are needed to uncover underlying biological mechanisms.


Subject(s)
DNA, Mitochondrial , Gastrointestinal Neoplasms , Humans , DNA, Mitochondrial/genetics , DNA Copy Number Variations , Cohort Studies , Mitochondria/genetics , Gastrointestinal Neoplasms/epidemiology , Gastrointestinal Neoplasms/genetics
11.
Chemosphere ; 308(Pt 3): 136438, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36116625

ABSTRACT

BACKGROUND: Cross-sectional studies have reported associations of perfluorooctanoic acid (PFOA) with concurrent serum uric acid (UA) levels. However, the prospective associations of other commonly detected perfluoroalkyl substances (PFASs) with serum UA and hyperuricemia remain unclear. METHODS: A total of 654 females from the Dongfeng-Tongji cohort, who were followed up from 2008 to 2018, were included in this study. We measured their baseline plasma concentrations of six PFASs [including perfluorooctane sulfonic acid (PFOS), PFOA, perfluorononanoic acid (PFNA), perfluorohexane sulfonic acid (PFHxS), perfluorodecanoic acid (PFDA), and perfluoroheptanoic acid (PFHpA)], as well as their serum UA levels at both baseline and follow-up visits. General linear and logistic regression models were constructed to explore the associations of each PFAS with annual change of serum UA and incident hyperuricemia. Mixture effects of PFASs were further assessed by using the quantile g-computation approach. RESULTS: Compared to participants with low PFNA exposure (≤50th), those with high PFNA exposure (>75th) had significantly increased annual increment of serum UA [ß(95%CI) = 2.58 (0.60, 4.55)]. No significant associations of PFOS, PFOA, PFDA, PFHxS, or PFHpA with serum UA change were observed. Besides, females with high PFOA or PFHpA (>75th) exposure had higher incident risk of hyperuricemia than those with low exposure (<50th) [OR (95%CI) = 1.94 (1.00, 3.76) and 1.86 (1.03, 3.36), respectively]. No significant associations of PFOS, PFNA, PFDA, and PFHxS with hyperuricemia risk were observed. Quantile g-computation approach didn't find significant effects of PFAS co-exposure on serum UA change or hyperuricemia incidence. CONCLUSIONS: Our findings suggested exposure to PFASs as a risk factor for hyperuricemia and shed light on hyperuricemia prevention for elderly females.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Hyperuricemia , Aged , Alkanesulfonic Acids/toxicity , Caprylates , China/epidemiology , Cross-Sectional Studies , Decanoic Acids , Environmental Pollutants/toxicity , Female , Fluorocarbons/toxicity , Humans , Hyperuricemia/chemically induced , Hyperuricemia/epidemiology , Longitudinal Studies , Sulfonic Acids , Uric Acid
12.
Environ Pollut ; 307: 119563, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35654255

ABSTRACT

Essential trace element zinc is associated with decreased lung cancer risk, but underlying mechanisms remain unclear. This study aimed to investigate role of DNA methylation in zinc-lung cancer association. We conducted a case-cohort study within prospective Dongfeng-Tongji cohort, including 359 incident lung cancer cases and a randomly selected sub-cohort of 1399 participants. Epigenome-wide association study (EWAS) was used to examine association of plasma zinc with DNA methylation in peripheral blood. For the zinc-related CpGs, their mediation effects on zinc-lung cancer association were assessed; their diagnostic performance for lung cancer was testified in the case-cohort study and further validated in another 126 pairs of lung cancer case-control study. We identified 28 CpGs associated with plasma zinc at P < 1.0 × 10-5 and seven of them (cg07077080, cg01077808, cg17749033, cg15554270, cg26125625, cg10669424, and cg15409013 annotated to GSR, CALR3, SLC16A3, PHLPP2, SLC12A8, VGLL4, and ADAMTS16, respectively) were associated with incident risk of lung cancer. Moreover, the above seven CpGs were differently methylated between 126 pairs of lung cancer and adjacent normal lung tissues and had the same directions with EWAS of zinc. They could mediate a separate 7.05%∼22.65% and a joint 29.42% of zinc-lung cancer association. Compared to using traditional factors, addition of methylation risk score exerted improved discriminations for lung cancer both in case-cohort study [area under the curve (AUC) = 0.818 vs. 0.738] and in case-control study (AUC = 0.816 vs. 0.646). Our results provide new insights for the biological role of DNA methylation in the inverse association of zinc with incident lung cancer.


Subject(s)
DNA Methylation , Lung Neoplasms , Case-Control Studies , Cohort Studies , Epigenesis, Genetic , Epigenome , Genome-Wide Association Study/methods , Humans , Lung , Lung Neoplasms/epidemiology , Lung Neoplasms/genetics , Phosphoprotein Phosphatases/genetics , Prospective Studies , Transcription Factors/genetics , Zinc
13.
Sci Total Environ ; 837: 155796, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35561928

ABSTRACT

Epidemiologic studies have suggested that elevated concentrations of zinc are associated with a decreased risk of lung cancer, but the underlying mechanisms remain to be investigated. The metabolites are highly sensitive to environmental stress, which will help to reveal the linkages between zinc exposure and lung cancer risk. We designed a nested case-control study including 101 incident lung cancer cases and 1:2 age- and sex-frequency-matched 202 healthy controls from the Dongfeng-Tongji (DFTJ) cohort. Their plasma level of zinc was determined by using inductively coupled plasma-mass spectrometry (ICP-MS) and plasma profiles of metabolites were detected by using an untargeted metabolomics approach. The generalized linear models (GLM) were applied to assess the associations of plasma zinc with metabolites, and the mediation effects of zinc-related metabolites on zinc-lung cancer association were further testified. The concentrations of 55 metabolites had linear dose-response relationships with plasma zinc at a false discovery rate (FDR) < 0.05, among which L-proline, phosphatidylcholine (PC, 34:2), phosphatidylethanolamine (PE, O-36:5), L-altrose, and sphingomyelin (SM, 40:3) showed different levels between lung cancer cases and healthy controls (fold change = 0.92, 0.95, 1.07, 0.90, and 1.08, respectively, and all P < 0.05). The plasma concentration of SM(40:3) was negatively associated with incident risk of lung cancer [OR(95%CI) = 0.71(0.55, 0.91), P = 0.007] and could mediate 41.7% of the association between zinc and lung cancer risk (P = 0.004). Moreover, compared to the traditional factors, addition of SM(40:3) exerted improved prediction performance for incident risk of lung cancer [AUC(95%CIs) = 0.714(0.654, 0.775) vs. 0.663(0.600, 0.727), P = 0.030]. Our findings revealed metabolic profiles with zinc exposure and provide new insight into the alternations of metabolites underpinning the links between zinc exposure and lung cancer development.


Subject(s)
Lung Neoplasms , Zinc , Case-Control Studies , Humans , Lung Neoplasms/chemically induced , Lung Neoplasms/epidemiology , Metabolomics/methods , Prospective Studies , Risk Factors
14.
Environ Pollut ; 306: 119345, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35472559

ABSTRACT

Experimental studies have suggested perfluoroalkyl substances (PFASs) as mammary toxicants, but few studies evaluated the prospective associations of PFASs with breast cancer risk. We performed a case-cohort study within the Dongfeng-Tongji cohort, including incident breast cancer cases (n = 226) and a random sub-cohort (n = 990). Baseline plasma concentrations of four perfluorinated carboxylic acids (PFCAs) [perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroheptanoic acid (PFHpA)] and two perfluorinated sulfonic acids (PFSAs) [perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS)] were measured. Barlow-weighted Cox regression models revealed that each 1-unit increase in ln-transformed PFOA and PFHpA was associated with a separate 35% and 20% elevated incident risk of breast cancer [HR(95%CI) = 1.35(1.03, 1.78) and 1.20(1.02, 1.40), respectively], which were also significant among postmenopausal females [HR(95%CI) = 1.34(1.01, 1.77) and 1.23 (1.02, 1.48), respectively]. Quantile g-computation analysis observed a 19% increased incident risk of breast cancer along with each simultaneous quartile increase in all ln-transformed PFCA concentrations [HR(95%CI) = 1.19(1.01, 1.41)], with PFOA accounting for 56% of the positive effect. Our findings firstly revealed the impact of short-chain PFHpA on increased incident risk of breast cancer, suggested exposure to PFASs as a risk factor for breast cancer, and shed light on breast cancer prevention by regulating PFASs as a chemical class.


Subject(s)
Alkanesulfonic Acids , Breast Neoplasms , Environmental Pollutants , Fluorocarbons , Breast Neoplasms/chemically induced , Breast Neoplasms/epidemiology , Cohort Studies , Female , Fluorocarbons/analysis , Humans , Incidence , Sulfonic Acids
15.
Aging Cell ; 21(3): e13563, 2022 03.
Article in English | MEDLINE | ID: mdl-35120273

ABSTRACT

In view of the sex differences in aging-related diseases, sex chromosomes may play a critical role during aging process. This study aimed to identify age-related DNA methylation changes on Y chromosome (ChrY). A two-stage study design was conducted in this study. The discovery stage contained 419 Chinese males, including 205 from the Wuhan-Zhuhai cohort panel, 107 from the coke oven workers panel, and 107 from the Shiyan panel. The validation stage contained 587 Chinese males from the Dongfeng-Tongji sub-cohort. We used the Illumina HumanMethylation BeadChip to determine genome-wide DNA methylation in peripheral blood of the study participants. The associations between age and methylation levels of ChrY CpGs were investigated by using linear regression models with adjustment for potential confounders. Further, associations of age-related ChrY CpGs with all-cause mortality were tested in the validation stage. We identified the significant associations of 41 ChrY CpGs with age at false discovery rate (FDR) <0.05 in the discovery stage, and 18 of them were validated in the validation stage (p < 0.05). Meta-analysis of both stages confirmed the robust positive associations of 14 CpGs and negative associations of 4 CpGs with age (FDR<0.05). Among them, cg03441493 and cg17816615 were significantly associated with all-cause mortality risk [HR(95% CI) = 1.37 (1.04, 1.79) and 0.70 (0.54, 0.93), respectively]. Our results highlighted the importance of ChrY CpGs on male aging.


Subject(s)
DNA Methylation , Epigenesis, Genetic , China , CpG Islands , DNA Methylation/genetics , Female , Genome-Wide Association Study , Humans , Male , Y Chromosome
16.
Ann N Y Acad Sci ; 1507(1): 108-120, 2022 01.
Article in English | MEDLINE | ID: mdl-34480349

ABSTRACT

This study aims to establish a biological age (BA) predictor and to investigate the roles of lifestyles on biological aging. The 14,848 participants with the available information of multisystem measurements from the Dongfeng-Tongji cohort were used to estimate BA. We developed a composite BA predictor showing a high correlation with chronological age (CA) (r = 0.82) by using an extreme gradient boosting (XGBoost) algorithm. The average frequency hearing threshold, forced expiratory volume in 1 second (FEV1 ), gender, systolic blood pressure, and homocysteine ranked as the top five important features for the BA predictor. Two aging indexes, recorded as the AgingAccel (the residual from regressing predicted age on CA) and aging rate (the ratio of predicted age to CA), showed positive associations with the risks of all-cause (HR (95% CI) = 1.12 (1.10-1.14) and 1.08 (1.07-1.10), respectively) and cause-specific (HRs ranged from 1.06 to ∼1.15) mortality. Each 1-point increase in healthy lifestyle score (including normal body mass index, never smoking, moderate alcohol drinking, physically active, and sleep 7-9 h/night) was associated with a 0.21-year decrease in the AgingAccel (95% CI: -0.27 to -0.15) and a 0.4% decrease in the aging rate (95% CI: -0.5% to -0.3%). This study developed a machine learning-based BA predictor in a prospective Chinese cohort. Adherence to healthy lifestyles showed associations with delayed biological aging, which highlights potential preventive interventions.


Subject(s)
Aging/genetics , Aging/metabolism , Healthy Lifestyle/physiology , Machine Learning/trends , Adult , Aged , Aged, 80 and over , Alcohol Drinking/adverse effects , Alcohol Drinking/genetics , Alcohol Drinking/metabolism , Alcohol Drinking/trends , China/epidemiology , Cohort Studies , Exercise/physiology , Exercise/trends , Female , Follow-Up Studies , Forecasting , Humans , Male , Middle Aged , Principal Component Analysis/methods , Prospective Studies , Smoking/adverse effects , Smoking/genetics , Smoking/metabolism , Smoking/trends
17.
Ann Med ; 53(1): 1118-1128, 2021 12.
Article in English | MEDLINE | ID: mdl-34259107

ABSTRACT

BACKGROUND: Circulating white blood cell (WBC) counts have been related to lung function impairment, but causal relationship was not established. We aimed to evaluate independent effects and causal relationships of WBC subtypes with lung function. METHODS: The 19,159 participants from NHANES 2011-2012 (n = 3570), coke-oven workers (COW, n = 1762) and Dongfeng-Tongji (DFTJ, n = 13,827) cohorts were included in the observational studies. The associations between circulating counts of WBC subtypes and prebronchodilator lung function were evaluated by linear regression models and LASSO regression was used to select effective WBC subtypes. Summary statistics for WBC-associated SNPs were extracted from literature, and Mendelian randomization (MR) analysis with inverse-variance weighted (IVW) method was applied to estimate the causal effects of total WBC and subtypes on lung function among 4012 subjects from COW (n = 1126) and DFTJ cohorts (n = 2886). RESULTS: Total WBC counts were negatively associated with lung function among three populations and their pooled analysis indicated that per 1 × 109 cells/L increase in total WBC was associated with 36.13 (95% CI: 30.35, 41.91) mL and 25.23 (95% CI: 19.97, 30.50) mL decrease in FVC and FEV1, respectively. Independent associations with lung function were found for neutrophils, monocytes, eosinophils and basophils (all p < .05), except lymphocytes. Besides, IVW MR analysis showed that genetically predicted total WBC and neutrophil counts were associated with reduced FVC (p = .017 and .021, respectively) and FEV1 (p = .048 and .043, respectively). CONCLUSIONS: WBC subtypes were independently associated with lower lung function except lymphocytes. Our findings suggest that circulating neutrophils may be causal factors in lung function impairment.KEY MESSAGESWhite blood cell (WBC) subtypes were negatively associated with lung function level except lymphocytes in the observational studies.Associations of WBC subtypes with lung function may be modified by sex and smoking.Mendelian randomization analysis shows that neutrophils may be causal factors in lung function impairment.


Subject(s)
Leukocytes , Lung/physiology , Humans , Leukocyte Count , Mendelian Randomization Analysis , Nutrition Surveys , Polymorphism, Single Nucleotide
18.
Sci Rep ; 11(1): 12532, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34131164

ABSTRACT

Systemic immune-inflammation index (SII) emerged as a biomarker of chronic inflammation and an independent prognostic factor for many cancers. We aimed to investigate the associations of SII level with total and cause-specific mortality risks in the general populations, and the potential modification effects of lifestyle-related factors on the above associations. In this study, we included 30,521 subjects from the Dongfeng-Tongji (DFTJ) cohort and 25,761 subjects from the National Health and Nutrition Examination Survey (NHANES) 1999-2014. Cox proportional hazards regression models were used to estimate the associations of SII with mortality from all-cause, cardiovascular diseases (CVD), cancer and other causes. In the DFTJ cohort, compared to subjects in the low SII subgroup, those within the middle and high SII subgroups had increased risks of total mortality [hazard ratio, HR (95% confidence interval, CI) = 1.12 (1.03-1.22) and 1.26 (1.16-1.36), respectively) and CVD mortality [HR (95%CI) = 1.36 (1.19-1.55) and 1.50 (1.32-1.71), respectively]; those within the high SII subgroup had a higher risk of other causes mortality [HR (95%CI) = 1.28 (1.09-1.49)]. In the NHANES 1999-2014, subjects in the high SII subgroup had higher risks of total, CVD, cancer and other causes mortality [HR (95%CI) = 1.38 (1.27-1.49), 1.33 (1.11-1.59), 1.22 (1.04-1.45) and 1.47 (1.32-1.63), respectively]. For subjects with a high level of SII, physical activity could attenuate a separate 30% and 32% risk of total and CVD mortality in the DFTJ cohort, and a separate 41% and 59% risk of total and CVD mortality in the NHANES 1999-2014. Our study suggested high SII level may increase total and CVD mortality in the general populations and physical activity exerted a beneficial effect on the above associations.


Subject(s)
Biomarkers , Cause of Death , Exercise , Inflammation/prevention & control , Aged , Cardiovascular Diseases/mortality , Cohort Studies , Female , Humans , Inflammation/mortality , Inflammation/pathology , Life Style , Male , Middle Aged , Neoplasms/mortality , Neutrophils/metabolism , Neutrophils/pathology , Nutrition Surveys , Proportional Hazards Models
19.
J Hazard Mater ; 416: 125839, 2021 08 15.
Article in English | MEDLINE | ID: mdl-33887567

ABSTRACT

Benzo[a]pyrene (B[a]P) is a typical carcinogen associated with increased lung cancer risk, but the underlying mechanisms remain unclear. This study aimed to investigate epigenome-wide DNA methylation associated with B[a]P exposure and their mediation effects on B[a]P-lung cancer association in two lung cancer case-control studies of 462 subjects. Their plasma levels of benzo[a]pyrene diol epoxide-albumin (BPDE-Alb) adducts and genome-wide DNA methylations were separately detected in peripheral blood by using enzyme-linked immunosorbent assay (ELISA) and genome-wide methylation arrays. The epigenome-wide meta-analysis was performed to analyze the associations between BPDE-Alb adducts and DNA methylations. Mediation analysis was applied to assess effect of DNA methylation on the B[a]P-lung cancer association. We identified 15 CpGs associated with BPDE-Alb adducts (P-meta < 1.0 × 10-5), among which the methylation levels at five loci (cg06245338, cg24256211, cg15107887, cg02211741, and cg04354393 annotated to UBE2O, SAMD4A, ACBD6, DGKZ, and SLFN13, respectively) mediated a separate 38.5%, 29.2%, 41.5%, 47.7%, 56.5%, and a joint 58.2% of the association between BPDE-Alb adducts and lung cancer risk. Compared to the traditional factors [area under the curve (AUC) = 0.788], addition of these CpGs exerted improved discriminations for lung cancer, with AUC ranging 0.828-0.861. Our results highlight DNA methylation alterations as potential mediators in lung tumorigenesis induced by B[a]P exposure.


Subject(s)
Benzo(a)pyrene , Lung Neoplasms , 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide , ATP-Binding Cassette Transporters , Benzo(a)pyrene/toxicity , DNA Adducts , DNA Methylation , Epigenome , Humans , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , Ubiquitin-Conjugating Enzymes
20.
J Hazard Mater ; 414: 125519, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33676251

ABSTRACT

Mosaic loss of chromosome Y (mLOY) is an indicator of genome instability, but the environmental stressors of mLOY remained largely unknown. In this study, we detected the internal exposure levels of 11 polycyclic aromatic hydrocarbon (PAH) metabolites and 22 metals among 888 coke-oven workers, and calculated their blood mLOY based on genome-wide SNP genotyping data and presented as median log R ratio (mLRR-Y). The generalized linear model (GLM), LASSO, and Bayesian kernel machine regression (BKMR), were used to select mLOY-relevant chemicals. The results of these models consistently suggested the negative dose-response relationships of urinary 1-hydroxynaphthalene (1-OHNa), antimony (Sb), and molybdenum (Mo) with mLRR-Y. There were no pairwise interactions between these three chemicals (Pinteraction > 0.05), but subjects with high exposure to ≥ 2 kinds of these chemicals showed reducing mLRR-Y [ß(95%CI) = - 0.015(- 0.023, - 0.008)], increasing oxidative DNA damage (marked by 8-hydroxydeoxyguanosine) [ß(95%CI) = 0.625(0.454, 0.796)] and chromosome damage (marked by micronucleus frequency in lymphocytes) [frequency ratio (FR) and 95%CI = 1.146(1.047, 1.225)] than those with low exposure to all these chemicals. The combined effects of 1-OHNa, Sb, and Mo on elevating DNA damage may partly explain their joint effects on increased blood mLOY. These results provided a new insight into environmental hazards co-exposure on chromosome-Y deletions.


Subject(s)
Coke , Occupational Exposure , Polycyclic Aromatic Hydrocarbons , Bayes Theorem , Chromosomes, Human, Y , Humans , Male , Mosaicism , Occupational Exposure/analysis , Polycyclic Aromatic Hydrocarbons/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...