Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 627
Filter
1.
PLoS Pathog ; 20(6): e1012271, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829910

ABSTRACT

Proper transcription regulation by key transcription factors, such as IRF3, is critical for anti-viral defense. Dynamics of enhancer activity play important roles in many biological processes, and epigenomic analysis is used to determine the involved enhancers and transcription factors. To determine new transcription factors in anti-DNA-virus response, we have performed H3K27ac ChIP-Seq and identified three transcription factors, NR2F6, MEF2D and MAFF, in promoting HSV-1 replication. NR2F6 promotes HSV-1 replication and gene expression in vitro and in vivo, but not dependent on cGAS/STING pathway. NR2F6 binds to the promoter of MAP3K5 and activates AP-1/c-Jun pathway, which is critical for DNA virus replication. On the other hand, NR2F6 is transcriptionally repressed by c-Jun and forms a negative feedback loop. Meanwhile, cGAS/STING innate immunity signaling represses NR2F6 through STAT3. Taken together, we have identified new transcription factors and revealed the underlying mechanisms involved in the network between DNA viruses and host cells.

2.
J Contam Hydrol ; 264: 104358, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38692144

ABSTRACT

The water quality evolution of surface and groundwater caused by mining activities and mine drainage is a grave public concern worldwide. To explore the effect of mine drainage on sulfate evolution, a multi-aquifer system in a typical coal mine in Northwest China was investigated using multi-isotopes (δ34SSO4, δ18OSO4, δD, and δ18Owater) and Positive Matrix Factorization (PMF) model. Before mining, the Jurassic aquifer was dominated by gypsum dissolution, accompanied by cation exchange and bacterial sulfate reduction, and the phreatic aquifers and surface water were dominated by carbonate dissolution. Significant increase in sulfate in phreatic aquifers due to mine drainage during the early stages of coal mining. However, in contrast to common mining activities that result in sulfate contamination from pyrite oxidation, mine drainage in this mining area resulted in accelerated groundwater flow and enhanced hydraulic connections between the phreatic and confined aquifers. Dilution caused by the altered groundwater flow system controlled the evolution of sulphate, leading to different degrees of sulfate decrease in all aquifers and surface water. As the hydrogeochemical characteristic of Jurassic aquifer evolved toward phreatic aquifer, this factor should be considered to avoid misjudgment in determining the source of mine water intrusion. The study reveals the hydrogeochemical evolution induced by mine drainage, which could benefit to the management of groundwater resources in mining areas.

3.
Poult Sci ; 103(7): 103778, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38703760

ABSTRACT

The gut-brain axis is essential in maintaining the homeostasis of neuronal system, endocrine system, and intestinal microbiota in both the afferent and efferent directions. This axis is considered to be a key mechanism that regulates feed efficiency (FE). This study aimed to investigate the regulatory mechanisms of gut-brain axis-related genes on the residual feed intake (RFI) in H-strain small-sized meat ducks. A total of 500 ducks with similar initial BW (635.2 ± 15.1 g) were selected and reared in the same experimental facility until slaughter at 42 d of age. RFI was calculated from the average daily gain (ADG), average daily feed intake (ADFI), and metabolic body weight (MBW0.75). Thirty high-RFI (H-RFI) and 30 low-RFI (L-RFI) birds were selected for further evaluation of growth performance, carcass characteristics, and blood biochemical parameter measurements. Six L-RFI and 6 H-RFI birds were then subjected to hypothalamic transcriptomic and cecal microbial sequencing analyses. Results indicated that L-RFI birds exhibited lower production performance (ADFI, FCR, and RFI) and blood biochemical indices (total cholesterol and ghrelin content) compared with H-RFI birds (P < 0.05). Gene expression differed significantly between the L-RFI and H-RFI birds, with 70 upregulated and 50 downregulated genes. The bacterial communities of L-RFI birds showed higher abundances of Bacteroides, Bifidobacterium, and Lactococcus, and lower abundances of Erysipelatoclostridium, Parasutterella, Fournierella, and Blautia compared with H-RFI birds (P < 0.05). Interactive analysis revealed bacterial communities associated with FE were significantly correlated with hypothalamic genes (P < 0.05), for example, Bacteroides was positively correlated with DGKH and LIPT2, while negatively correlated with CAPN9, GABRD, and PDE1A. Bifidobacterium showed significant correlations with ATP2A3, CALHM6, and TMEM121B. Overall, RFI was a crucial indicator of FE, regulated by interactions between brain gene expression and gut microbiota through cAMP signaling, neuroactive ligand-receptor interaction, and calcium signaling pathways. Notably, increased expression of hypothalamic genes and abundance of carbohydrate-utilization microbiota in L-RFI meat ducks improved FE by enhancing energy metabolism and volatile fatty acids absorption.

4.
Langmuir ; 40(21): 11160-11172, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38748754

ABSTRACT

The development of catalysts with high photon utilization efficiency is crucial for enhancing the catalytic performance of photocatalysts. Graphitic carbon nitride (g-C3N4) is a prominent material in the field of photocatalysis. However, it still exhibits drawbacks such as low utilization of visible light and severe recombination of photogenerated carriers. To address these issues, this study employs MoS2 nanotubes (NTs) as cocatalysts and constructs MoS2 NTs/g-C3N4. The MoS2 NTs/g-C3N4 exhibits a significant cavity enhancement effect through multiple light reflections. This results in a broad spectral absorption range and high photon utilization efficiency, while also reducing the recombination of photogenerated carriers. The photocatalyst demonstrates outstanding performance in both photocatalytic hydrogen production and photodegradation of organic pollutants. Specifically, the hydrogen production rate is 1921 µmol·g-1·h-1, which is approximately 2.4 times that of g-C3N4. Furthermore, the photodegradation rate of Rhodamine B reaches 98.6% within 30 min, which is approximately three times higher than that of g-C3N4. Free radical capture experiments confirm that holes (h+) are the primary active species in photodegradation. A plausible photocatalytic mechanism for the catalyst is proposed. This study provides valuable insights into the development of heterojunction photocatalysts with high photon utilization efficiency.

6.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731398

ABSTRACT

(1) Background: Alzheimer's disease (AD) is characterized by ß-amyloid (Aß) peptide accumulation and mitochondrial dysfunction during the early stage of disease. PINK1 regulates the balance between mitochondrial homeostasis and bioenergy supply and demand via the PINK1/Parkin pathway, Na+/Ca2+ exchange, and other pathways. (2) Methods: In this study, we synthesized positively charged carbon dots (CA-PEI CDs) using citric acid (CA) and polyethyleneimine (PEI) and used them as vectors to express PINK1 genes in the APP/PS1-N2a cell line to determine mitochondrial function, electron transport chain (ETC) activity, and ATP-related metabolomics. (3) Results: Our findings showed that the CA-PEI CDs exhibit the characteristics of photoluminescence, low toxicity, and concentrated DNA. They are ideal biological carriers for gene delivery. PINK1 overexpression significantly increased the mitochondrial membrane potential in APP/PS1-N2a cells and reduced reactive-oxygen-species generation and Aß1-40 and Aß1-42 levels. An increase in the activity of NADH ubiquinone oxidoreductase (complex I, CI) and cytochrome C oxidase (complex IV, CIV) induces the oxidative phosphorylation of mitochondria, increasing ATP generation. (4) Conclusions: These findings indicate that the PINK gene can alleviate AD by increasing bioenergetic metabolism, reducing Aß1-40 and Aß1-42, and increasing ATP production.


Subject(s)
Adenosine Triphosphate , Carbon , Citric Acid , Mitochondria , Polyethyleneimine , Protein Kinases , Polyethyleneimine/chemistry , Carbon/chemistry , Adenosine Triphosphate/metabolism , Protein Kinases/metabolism , Protein Kinases/genetics , Mitochondria/metabolism , Mitochondria/drug effects , Mice , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Quantum Dots/chemistry , Animals , Amyloid beta-Peptides/metabolism , Membrane Potential, Mitochondrial/drug effects , Humans , Cell Line , Reactive Oxygen Species/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism
7.
ACS Omega ; 9(18): 20444-20453, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38737076

ABSTRACT

Films formed by metals and phenols through a coordinative interaction have been extensively studied in previous years. We report the successful formation of MPN films from the phenolic compounds caffeic acid and lignosulfonate using Fe3+ ions for complexation. The likewise examined p-coumaryl alcohol showed some MPN film formation tendency, while for coniferyl alcohol and sinapyl alcohol, no successful film buildup could be observed. These newly formed films were compared to tannic acid-Fe3+ films as a reference. Film growth and degradation were tracked by using UV-vis absorption spectroscopy. The films were degradable under different conditions such as alkaline environments or in the presence of a strong chelator. Small hollow capsules with a diameter of 3 µm and thicknesses in the nanometer range were produced. Additionally, the prepared films showed varying colors and levels of wettability. By utilizing the films' coating properties, we successfully dyed human hair in various colors.

8.
Anim Nutr ; 17: 75-86, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38737580

ABSTRACT

This study aimed to investigate the effects of different proportions of dietary fermented sweet potato residue (FSPR) supplementation as a substitute for corn on the nutrient digestibility, meat quality, and intestinal microbes of yellow-feathered broilers. Experiment 1 (force-feeding) evaluated the nutrient composition and digestibility of mixtures with different proportions of sweet potato residue (70%, 80%, 90%, and 100%) before and after fermentation. In Experiment 2 (metabolic growth), a total of 420 one-day-old yellow-feathered broilers were randomly allocated to 4 groups and fed corn-soybean meal-based diets with 0, 5%, 8%, and 10% FSPR as a substitute for corn. The force-feeding and metabolic growth experiments were performed for 9 and 70 d, respectively. The treatment of 70% sweet potato residue (after fermentation) had the highest levels of crude protein, ether extract, and crude fiber and improved the digestibility of crude protein and amino acids (P < 0.05). Although dietary FSPR supplementation at different levels had no significant effect on growth performance and intestinal morphology, it improved slaughter rate, half-chamber rate, full clearance rate, and meat color, as well as reduced cooking loss in the breast and thigh muscles (P < 0.05). Dietary supplementation with 8% and 10% FSPR increased the serum immunoglobulin M and immunoglobulin G levels in broilers (P < 0.05). Furthermore, 10% FSPR increased the Shannon index and Ruminococcaceae_UCG-014, Ruminococcaceae_UCG-010 and Romboutsia abundances and decreased Sutterella and Megamonas abundances (P < 0.05). Spearman's correlation analysis showed that meat color was positively correlated with Ruminococcaceae_UCG-014 (P < 0.05) and negatively correlated with Megamonas (P < 0.05). Collectively, 70% sweet potato residue (after fermentation) had the best nutritional value and nutrient digestibility. Dietary supplementation with 8% to 10% FSPR as a substitute for corn can improve the slaughter performance, meat quality, and intestinal microbe profiles of broilers. Our findings suggest that FSPR has the potential to be used as a substitute for corn-soybean meals to improve the meat quality and intestinal health of broilers.

9.
Mult Scler J Exp Transl Clin ; 10(2): 20552173241252571, 2024.
Article in English | MEDLINE | ID: mdl-38756414

ABSTRACT

Background: Low-intensity repetitive transcranial magnetic stimulation (rTMS), delivered as a daily intermittent theta burst stimulation (iTBS) for four consecutive weeks, increased the number of new oligodendrocytes in the adult mouse brain. Therefore, rTMS holds potential as a remyelinating intervention for people with multiple sclerosis (MS). Objective: Primarily to determine the safety and tolerability of our rTMS protocol in people with MS. Secondary objectives include feasibility, blinding and an exploration of changes in magnetic resonance imaging (MRI) metrics, patient-reported outcome measures (PROMs) and cognitive or motor performance. Methods: A randomised (2:1), placebo controlled, single blind, parallel group, phase 1 trial of 20 rTMS sessions (600 iTBS pulses per hemisphere; 25% maximum stimulator output), delivered over 4-5 weeks. Twenty participants were randomly assigned to 'sham' (n = 7) or active rTMS (n = 13), with the coil positioned at 90° or 0°, respectively. Results: Five adverse events (AEs) including one serious AE reported. None were related to treatment. Protocol compliance was high (85%) and blinding successful. Within participant MRI metrics, PROMs and cognitive or motor performance were unchanged over time. Conclusion: Twenty sessions of rTMS is safe and well tolerated in a small group of people with MS. The study protocol and procedures are feasible. Improvement of sham is warranted before further investigating safety and efficacy.

10.
Acta Pharmacol Sin ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760542

ABSTRACT

This study aimed to analyze potential ethnic disparities in the dose-exposure-response relationships of trilaciclib, a first-in-class intravenous cyclin-dependent kinase 4/6 inhibitor for treating chemotherapy-induced myelosuppression in patients with extensive-stage small cell lung cancer (ES-SCLC). This investigation focused on characterizing these relationships in both Chinese and non-Chinese patients to further refine the dosing regimen for trilaciclib in Chinese patients with ES-SCLC. Population pharmacokinetic (PopPK) and exposure-response (E-R) analyses were conducted using pooled data from four randomized phase 2/3 trials involving Chinese and non-Chinese patients with ES-SCLC. PopPK analysis revealed that trilaciclib clearance in Chinese patients was approximately 17% higher than that in non-Chinese patients with ES-SCLC. Sex and body surface area influenced trilaciclib pharmacokinetics in both populations but did not exert a significant clinical impact. E-R analysis demonstrated that trilaciclib exposure increased with a dosage escalation from 200 to 280 mg/m2, without notable changes in myeloprotective or antitumor efficacy. However, the incidence of infusion site reactions, headaches, and phlebitis/thrombophlebitis rose with increasing trilaciclib exposure in both Chinese and non-Chinese patients with ES-SCLC. These findings suggest no substantial ethnic disparities in the dose-exposure-response relationship between Chinese and non-Chinese patients. They support the adoption of a 240-mg/m2 intravenous 3-day or 5-day dosing regimen for trilaciclib in Chinese patients with ES-SCLC.

11.
Medicine (Baltimore) ; 103(19): e38055, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728465

ABSTRACT

Multiple studies have indicated a potential correlation between immune-mediated inflammatory diseases (IMIDs) and Frozen shoulder (FS). To explore the genetic causal relationship between IMIDs and FS using 2-sample Mendelian randomization (MR) analysis. Genome-wide association study (GWAS) summary data for FS were obtained from Green's study, while data for 10 IMIDs were sourced from the FinnGen Consortium. The MR analysis was performed using inverse variance weighting, MR Egger, and weighted median methods. IVW, as the primary MR analysis technique, was complemented with other sensitivity analyses to validate the robustness of the results. Additionally, reverse MR analysis was further conducted to investigate the presence of reverse causal relationships. In the forward MR analysis, genetically determined 4 IMIDs are causally associated with FS: rheumatoid arthritis (odds ratio [OR] (95% confidence interval [95% CI]) = 1.05 [1.02-1.09], P < .01); type 1 diabetes (OR [95% CI] = 1.06 [1.03-1.09], P < .01); hypothyroidism (OR [95% CI] = 1.07 [1.01-1.14], P = .02); and Celiac disease (OR [95% CI] = 1.02 [1.01-1.04], P = .01). However, no causal relationship was found between 6 IMIDs (autoimmune hyperthyroidism, Crohn disease, ulcerative colitis, psoriasis, sicca syndrome and systemic lupus erythematosus) and FS. Sensitivity analyses did not detect any heterogeneity or horizontal pleiotropy. In the reverse MR analysis, no causal relationship was observed between FS and IMIDs. In conclusion, this MR study suggests a potential causal relationship between rheumatoid arthritis, type 1 diabetes, hypothyroidism, and Celiac disease in the onset and development of FS. Nevertheless, more basic and clinical research will be needed in the future to support our findings.


Subject(s)
Bursitis , Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Bursitis/genetics , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Genetic Predisposition to Disease , Hypothyroidism/genetics , Polymorphism, Single Nucleotide
12.
Article in English | MEDLINE | ID: mdl-38788155

ABSTRACT

Navigating more effective methods to enhance the photon utilization of photodetectors poses a significant challenge. This study initially investigates the impact of morphological alterations in 2H-MoS2 on photodetector (PD) performance. The results reveal that compared to layered MoS2 (MoS2 NLs), MoS2 nanotubes (MoS2 NTs) impart a cavity enhancement effect through multiple light reflections. This structural feature significantly enhances the photodetection performance of the MoS2-based PDs. We further employ the heterojunction strategy to construct Y-TiOPc NPs:MoS2 NTs, utilizing Y-TiOPc NPs (Y-type titanylphthalocyanine) as the vis-NIR photosensitizer and MoS2 NTs as the photon absorption enhancer. This approach not only addresses the weak absorption of MoS2 NTs in the near-infrared region but also enhances carrier generation, separation, and transport efficiency. Additionally, the band bending phenomenon induced by trapped-electrons at the interface between ITO and the photoactive layer significantly enhances the hole tunneling injection capability from the external circuit. By leveraging the synergistic effects of the aforementioned strategies, the PD based on Y-TiOPc NPs:MoS2 NTs (Y:MT-PD) exhibits superior photodetection performance in the wavelength range of 365-940 nm compared to MoS2 NLs-based PD and MoS2 NTs-based PD. Particularly noteworthy are the peak values of key metrics for Y:MT-PD, such as EQE, R, and D* that are 4947.6%, 20588 mA/W, and 1.94 × 1012 Jones, respectively. The multiperiod time-resolved photocurrent response curves of Y:MT-PD also surpass those of the other two PDs, displaying rapid, stable, and reproducible responses across all wavelengths. This study provides valuable insights for the further development of photoactive materials with a high photon utilization efficiency.

13.
Artif Intell Med ; 152: 102872, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701636

ABSTRACT

Accurately measuring the evolution of Multiple Sclerosis (MS) with magnetic resonance imaging (MRI) critically informs understanding of disease progression and helps to direct therapeutic strategy. Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area. Obtaining sufficient data from a single clinical site is challenging and does not address the heterogeneous need for model robustness. Conversely, the collection of data from multiple sites introduces data privacy concerns and potential label noise due to varying annotation standards. To address this dilemma, we explore the use of the federated learning framework while considering label noise. Our approach enables collaboration among multiple clinical sites without compromising data privacy under a federated learning paradigm that incorporates a noise-robust training strategy based on label correction. Specifically, we introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions, enabling the correction of false annotations based on prediction confidence. We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites, enhancing the reliability of the correction process. Extensive experiments conducted on two multi-site datasets demonstrate the effectiveness and robustness of our proposed methods, indicating their potential for clinical applications in multi-site collaborations to train better deep learning models with lower cost in data collection and annotation.


Subject(s)
Deep Learning , Magnetic Resonance Imaging , Multiple Sclerosis , Multiple Sclerosis/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods
14.
Crit Rev Oncol Hematol ; 199: 104380, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38718939

ABSTRACT

Cancer is a leading cause of death in both China and developed countries due to its high incidence and low cure rate. Immune function is closely linked to the development and progression of tumors. Platelets, which are primarily known for their role in hemostasis, also play a crucial part in the spread and progression of tumors through their interaction with the immune microenvironment. The impact of platelets on tumor growth and metastasis depends on the type of cancer and treatment method used. This article provides an overview of the relationship between platelets and the immune microenvironment, highlighting how platelets can either protect or harm the immune response and cancer immune escape. We also explore the potential of available platelet-targeting strategies for tumor immunotherapy, as well as the promise of new platelet-targeted tumor therapy methods through further research.

15.
Compr Rev Food Sci Food Saf ; 23(3): e13362, 2024 05.
Article in English | MEDLINE | ID: mdl-38720585

ABSTRACT

Fermentation is a traditional method utilized for vegetable preservation, with microorganisms playing a crucial role in the process. Nowadays, traditional spontaneous fermentation methods are widely employed, which excessively depend on the microorganisms attached to the surface of raw materials, resulting in great difficulties in ideal control over the fermentation process. To achieve standardized production and improve product quality, it is essential to promote inoculated fermentation. In this way, starter cultures can dominate the fermentation processes successfully. Unfortunately, inoculated fermentation has not been thoroughly studied and applied. Therefore, this paper provides a systematic review of the potential upgrading strategy of vegetable fermentation technology. First, we disclose the microbial community structures and succession rules in some typical spontaneously fermented vegetables to comprehend the microbial fermentation processes well. Then, internal and external factors affecting microorganisms are explored to provide references for the selection of fermented materials and conditions. Besides, we widely summarize the potential starter candidates with various characteristics isolated from spontaneously fermented products. Subsequently, we exhibited the inoculated fermentation strategies with those isolations. To optimize the product quality, not only lactic acid bacteria that lead the fermentation, but also yeasts that contribute to aroma formation should be combined for inoculation. The inoculation order of the starter cultures also affects the microbial fermentation. It is equally important to choose a proper processing method to guarantee the activity and convenience of starter cultures. Only in this way can we achieve the transition from traditional spontaneous fermentation to modern inoculated fermentation.


Subject(s)
Fermentation , Vegetables , Bacteria , Fermented Foods/microbiology , Food Microbiology/methods , Microbiota , Vegetables/microbiology , Yeasts
16.
Zool Res ; 45(3): 535-550, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38747058

ABSTRACT

Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function. Synaptic abnormalities, such as defects in the density and morphology of postsynaptic dendritic spines, underlie the pathology of various neuropsychiatric disorders. Protocadherin 17 (PCDH17) is associated with major mood disorders, including bipolar disorder and depression. However, the molecular mechanisms by which PCDH17 regulates spine number, morphology, and behavior remain elusive. In this study, we found that PCDH17 functions at postsynaptic sites, restricting the number and size of dendritic spines in excitatory neurons. Selective overexpression of PCDH17 in the ventral hippocampal CA1 results in spine loss and anxiety- and depression-like behaviors in mice. Mechanistically, PCDH17 interacts with actin-relevant proteins and regulates actin filament (F-actin) organization. Specifically, PCDH17 binds to ROCK2, increasing its expression and subsequently enhancing the activity of downstream targets such as LIMK1 and the phosphorylation of cofilin serine-3 (Ser3). Inhibition of ROCK2 activity with belumosudil (KD025) ameliorates the defective F-actin organization and spine structure induced by PCDH17 overexpression, suggesting that ROCK2 mediates the effects of PCDH17 on F-actin content and spine development. Hence, these findings reveal a novel mechanism by which PCDH17 regulates synapse development and behavior, providing pathological insights into the neurobiological basis of mood disorders.


Subject(s)
Actin Cytoskeleton , Cadherins , Dendritic Spines , Protocadherins , rho-Associated Kinases , Animals , Mice , Actin Cytoskeleton/metabolism , Cadherins/metabolism , Cadherins/genetics , Dendritic Spines/metabolism , Dendritic Spines/physiology , Gene Expression Regulation , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Protocadherins/genetics , Protocadherins/metabolism
17.
Biochem Biophys Res Commun ; 719: 150048, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38763044

ABSTRACT

Double knockout of miR-183 and miR-96 results in retinal degeneration in mice; however, single knockout of miR-96 leads to developmental delay but not substantial retinal degeneration. To further explore the role of miR-96, we overexpressed this miRNA in mouse retinas. Interestingly, we found that overexpression of miR-96 at a safe dose results in retinal degeneration in the mouse retina. The retinal photoreceptors dramatically degenerated in the miR-96-overexpressing group, as shown by OCT, ERG and cryosectioning at one month after subretinal injection. Degenerative features such as TUNEL signals and reactive gliosis were observed in the miR-96-overexpressing retina. RNA-seq data revealed that immune responses and microglial activation occurred in the degenerating retina. Further qRT‒PCR and immunostaining experiments verified the microglial activation. Moreover, the number of microglia in the miR-96-overexpressing retinas was significantly increased. Our findings demonstrate that appropriate miR-96 expression is required for mouse retinal homeostasis.


Subject(s)
Mice, Inbred C57BL , MicroRNAs , Microglia , Retinal Degeneration , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Retinal Degeneration/metabolism , Mice , Microglia/metabolism , Microglia/pathology , Retina/metabolism , Retina/pathology
18.
Front Med (Lausanne) ; 11: 1390164, 2024.
Article in English | MEDLINE | ID: mdl-38818394

ABSTRACT

Background: The direct acting antiviral remdesivir (RDV) has shown promising results in randomized clinical trials. This study is a unique report of real clinical practice RDV administration for COVID-19 from alpha through delta variant circulation in New Orleans, Louisiana (NOLA). Patients in NOLA have among US worst pre-COVID health outcomes, and the region was an early epicenter for severe COVID. Methods: Data were directly extracted from electronic medical records through REACHnet. Of 9,106 adults with COVID, 1,928 were admitted to inpatient care within 7 days of diagnosis. The propensity score is based upon 22 selected covariates, related to both RDV assignment and outcome of interest. RDV and non-RDV patients were matched 1:1 with replacement, by location and calendar period of admission. Primary and secondary endpoints were, death from any cause and inpatient discharge, within 28 and 14 days after inpatient admission. Results: Of 448 patients treated with RDV, 419 (94%) were successfully matched to a non-RDV patient. 145 (35%) patients received RDV for < 5 days, 235 (56%) for 5 days, and 39 (9%) for > 5 days. 96% of those on RDV received it within 2 days of admission. RDV was more frequently prescribed in patients with pneumonia (standardized difference: 0.75), respiratory failure, hypoxemia, or dependence on supplemental oxygen (0.69), and obesity (0.35) within 5 days prior to RDV initiation or corresponding day in non-RDV patients (index day). RDV patients were numerically more likely to be on steroids within 5 days prior to index day (86 vs. 82%) and within 7 days after inpatient admission (96 vs. 87%). RDV was significantly associated with lower risk of death within 14 days after admission (hazard ratio [HR]: 0.37, 95% CI: 0.19 to 0.69, p = 0.002) but not within 28 days (HR: 0.62, 95% CI: 0.36 to 1.07, p = 0.08). Discharge within 14 days of admission was significantly more likely for RDV patients (p < 0.001) and numerically more likely within 28 days after admission (p = 0.06). Conclusion: Overall, our findings support recommendation of RDV administration for COVID-19 in a highly comorbid, highly impoverished population representative of both Black and White subjects in the US Gulf South.

19.
Plant Physiol Biochem ; 211: 108679, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714127

ABSTRACT

Cold stress is a limiting stress factor that limits plant distribution and development; however, polyploid plants have specific characteristics such as higher resistance to abiotic stress, especially cold stress, that allow them to overcome this challenge. The cultivated cultivar Ziziphus jujuba Mill. 'Yueguang' (YG) and its autotetraploid counterpart 'Hongguang' (HG) exhibit differential cold tolerance. However, the underlying molecular mechanism and methods to enhance their cold tolerance remain unknown. Anatomical structure and physiological analysis indicated YG had a higher wood bark ratio, and xylem ratio under cold treatment compared to HG. However, the half-lethal temperature (LT50), cortex ratio, and malondialdehyde (MDA) content were significantly decreased in YG than HG, which indicated YG was cold tolerant than HG. Transcriptome analysis showed that 2084, 1725, 2888, and 2934 differentially expressed genes (DEGs) were identified in HC vs YC, H20 vs Y20, Y20 vs YC, and H20 vs HC treatment, respectively. Meanwhile, KEGG enrichment analysis of DEGs showed that several metabolic pathways, primarily plant hormone signal transduction and the MAPK signaling pathway, were involved in the differential regulation of cold tolerance between YG and HG. Furthermore, exogenous abscisic acid (ABA) and brassinolide (BR) treatments could improve their cold tolerance through increased SOD and POD activities, decreased relative electrical conductivity, and MDA content. All of these findings suggested that plant hormone signal transduction, particularly ABA and BR, might have an important role in the regulation of differential cold tolerance between YG and HG, laying the foundation for further improving cold tolerance in jujube and examining the molecular mechanisms underlying differences in cold tolerance among different ploidy cultivars.


Subject(s)
Cold-Shock Response , Gene Expression Profiling , Gene Expression Regulation, Plant , Ziziphus , Ziziphus/genetics , Ziziphus/physiology , Ziziphus/metabolism , Cold-Shock Response/genetics , Transcriptome/genetics , Cold Temperature , Malondialdehyde/metabolism
20.
Aging (Albany NY) ; 162024 May 30.
Article in English | MEDLINE | ID: mdl-38819228

ABSTRACT

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a gastrointestinal malignancy with high incidence. This study aimed to reveal the complete circRNA-miRNA-mRNA regulatory network in ESCC and validate its function mechanism. METHOD: Expression of OTU Domain-Containing Ubiquitin Aldehyde-Binding Protein 2 (OTUB2) in ESCC was analyzed by bioinformatics to find the binding sites between circRNA6448-14 and miR-455-3p, as well as miR-455-3p and OTUB2. The binding relationships were verified by RNA Immunoprecipitation (RIP) and dual-luciferase assay. The expressions of circRNA6448-14, miR-455-3p, and OTUB2 were detected by quantitative real-time polymerase chain reaction (qRT-PCR). MTT assay measured cell viability, and the spheroid formation assay assessed the ability of stem cell sphere formation. Western blot (WB) determined the expression of marker proteins of stem cell surface and rate-limiting enzyme of glycolysis. The Seahorse XFe96 extracellular flux analyzer measured the rate of extracellular acidification rate and cellular oxygen consumption. Corresponding assay kits assessed cellular glucose consumption, lactate production, and adenosine triphosphate (ATP) generation. RESULTS: In ESCC, circRNA6448-14 and OTUB2 were highly expressed in contrast to miR-455-3p. Knocking down circRNA6448-14 could prevent the glycolysis and stemness of ESCC cells. Additionally, circRNA6448-14 enhanced the expression of OTUB2 by sponging miR-455-3p. Overexpression of OTUB2 or silencing miR-455-3p reversed the inhibitory effect of knockdown of circRNA6448-14 on ESCC glycolysis and stemness. CONCLUSION: This research demonstrated that the circRNA6448-14/miR-455-3p/OTUB2 axis induced the glycolysis and stemness of ESCC cells. Our study revealed a novel function of circRNA6448-14, which may serve as a potential therapeutic target for ESCC.

SELECTION OF CITATIONS
SEARCH DETAIL
...