Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 60(58): 7435-7438, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38922599

ABSTRACT

We investigate the properties of ultrathin 3,4,9,10-perylenetetracarboxylic diimide (PTCDI) films using a combination of tip-enhanced photoluminescence and unsupervised machine learning. We expose nanoscale spectral heterogeneities that can be understood on the basis of the interplay between vibronic effects, intermolecular excitons, and intramolecular excitons in PTDCI films.

2.
Polymers (Basel) ; 16(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38475376

ABSTRACT

Oil/water separation processes have garnered significant global attention due to the quick growth in industrial development, recurring chemical leakages, and oil spills. Hence, there is a significant demand for the development of inexpensive superwetting materials in an eco-friendly manner to separate oil/water mixtures and emulsions. In this study, a superwetting melamine sponge (SMS) with switchable wettabilities was prepared by modifying melamine sponge (MS) with sodium dodecanoate. The as-prepared SMS exhibited superhydrophobicity, superoleophilicity, underwater superoleophobicity, and underoil superhydrophobicity. The SMS can be utilized in treating both light and heavy oil/water mixtures through the prewetting process. It demonstrated fast permeation fluxes (reaching 108,600 L m-2 h-1 for a light oil/water mixture and 147,700 L m-2 h-1 for a heavy oil/water mixture) and exhibited good separation efficiency (exceeding 99.56%). The compressed SMS was employed in separating surfactant-stabilized water-in-oil emulsions (SWOEs), as well as surfactant-stabilized oil-in-water emulsions (SOWEs), giving high permeation fluxes (reaching 7210 and 5054 L m-2 h-1, respectively). The oil purity for SWOEs' filtrates surpassed 99.98 wt% and the separation efficiencies of SOWEs exceeded 98.84%. Owing to their remarkable capability for separating oil/water mixtures and emulsions, eco-friendly fabrication method, and feasibility for large-scale production, our SMS has a promising potential for practical applications.

3.
Proc Natl Acad Sci U S A ; 121(14): e2319233121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38547064

ABSTRACT

Chemical transformations near plasmonic metals have attracted increasing attention in the past few years. Specifically, reactions occurring within plasmonic nanojunctions that can be detected via surface and tip-enhanced Raman (SER and TER) scattering were the focus of numerous reports. In this context, even though the transition between localized and nonlocal (quantum) plasmons at nanojunctions is documented, its implications on plasmonic chemistry remain poorly understood. We explore the latter through AFM-TER-current measurements. We use two molecules: i) 4-mercaptobenzonitrile (MBN) that reports on the (non)local fields and ii) 4-nitrothiophenol (NTP) that features defined signatures of its neutral/anionic forms and dimer product, 4,4'-dimercaptoazobenzene (DMAB). The transition from classical to quantum plasmons is established through our optical measurements: It is marked by molecular charging and optical rectification. Simultaneously recorded force and current measurements support our assignments. In the case of NTP, we observe the parent and DMAB product beneath the probe in the classical regime. Further reducing the gap leads to the collapse of DMAB to form NTP anions. The process is reversible: Anions subsequently recombine into DMAB. Our results have significant implications for AFM-based TER measurements and their analysis, beyond the scope of this work. In effect, when precise control over the junction is not possible (e.g., in SER and ambient TER), both classical and quantum plasmons need to be considered in the analysis of plasmonic reactions.

4.
J Phys Chem Lett ; 14(37): 8334-8338, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37698921

ABSTRACT

We revisit nanoscale local optical field imaging via tip-enhanced Raman scattering (TERS). Rather than taking advantage of molecular reporters to probe different aspects of the local fields, we show how ultralow frequency Raman (ULF) scattering from the (nanocorrugated) metallic probe itself can be used for the same purpose. The bright ULF-TERS response we record allows non-invasive (tapping mode feedback) local field imaging, enables visualization of the local fields of small (≥20 nm) isolated plasmonic particles, and can also be exploited to distinguish between Si and SiO2 domains with 5 nm spatial resolution. We describe our approach and its limitations, particularly when it comes to using all-metallic versus molecular reporters.

5.
Nano Lett ; 23(19): 9114-9118, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37751571

ABSTRACT

Our knowledge of the electromagnetic fields that power modern nanoscale optical measurements, including (non)linear tip-enhanced Raman and photoluminescence, chiefly stems from numerical simulations. Aside from idealized in silico vs heterogeneous (nano)structures in the laboratory, challenges in quantitative descriptions of nanoscale light-matter interactions more generally stem from the very nature of the problem, which lies at the interface of classical and quantum theories. This is particularly the case in ultrahigh spatial resolution measurements that are sensitive to local optical field variations that take place on subnanometer length scales. This work approaches this challenge through extinction-based spectral nanoimaging experiments. We demonstrate <1 nm spatial resolution in hyperspectral extinction measurements that track spatially varying plasmon resonances. We describe the principles behind our experiments and highlight more general implications of our observations.

6.
Foods ; 12(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37107438

ABSTRACT

Chin-shin oolong tea is the most widely planted variety in Taiwan. This study fermented eight whole grains fermentation starter (EGS) with light (LOT), medium (MOT), and fully (FOT) oxidized Chin-shin oolong teas for ten weeks. Comparing the three fermentation beverages, it was found that LOT fermentation can obtain the highest catechins (1644.56 ± 60.15 ppm) among the functional and antioxidant components. MOT can obtain the highest glucuronic acid (19,040.29 ± 2903.91 ppm), tannins, total phenols, flavonoids, and angiotensin-converting enzyme (ACE) inhibitory activity. FOT can obtain the highest GABA (1360.92 ± 123.24 ppm). In addition, both the LOT and MOT showed a significant increase in their ability to scavenge DPPH radicals after fermentation. EGS fermented with lightly or moderately oxidized Chin-shin oolong tea may be considered a novel Kombucha.

7.
J Phys Chem A ; 127(4): 1081-1084, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36689268

ABSTRACT

Nonlinear nano-optical measurements that combine ultrafast spectroscopy with tools of scanning probe microscopy are scarce. This is particularly the case when high spatial resolution on the order of a few nanometers is sought after in experiments performed under ambient laboratory conditions. In this work, we demonstrate the latter through measurements that track two-photon photoluminescence from aggregates of CdSe/ZnS quantum dots with sub-5 nm spatial resolution. Our proof-of-principle measurements that only take advantage of a plasmonic probe (as opposed to a gap mode) pave the way for nonlinear photoluminescence-based spectral nanoimaging of realistic/heterogeneous (bio) molecular and (bio) material systems.

8.
Langmuir ; 39(2): 717-727, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36584671

ABSTRACT

We fabricated a mussel-inspired hemocompatible polycarbonate membrane (PC) modified by the cross-linking of chondroitin sulfate and caffeic acid polymer using CA-CS via a Schiff base and Michael addition reaction and named it CA-CS-PC. The as-fabricated CA-CS-PC membrane shows excellent hydrophilicity with a water contact angle of 0° and a negative surface charge with a zeta potential of -32 mV. The antiadhesion property of the CA-CS-modified PC membrane was investigated by enzyme-linked immunosorbent assay (ELISA), using human plasma protein fibrinogen adsorption studies, and proved to have excellent antiadhesion properties, because of the lower fibrinogen adsorption. In addition, the CA-CS-PC membrane also shows enhanced hemocompatibility. Finally, blood cell attachment tests of the CA-CS-PC membrane were observed by CLSM and SEM, and the obtained results proved that CA-CS-PC effectively resisted cell adhesion, such as platelets and leucocytes. Therefore, this work disclosed a new way to design a simple and versatile modification of the membrane surface by caffeic acid and chondroitin sulfate and apply it for cell adhesion.


Subject(s)
Chondroitin Sulfates , Fibrinogen , Humans , Cell Adhesion , Fibrinogen/metabolism
9.
Anal Chem ; 94(51): 17779-17786, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36519823

ABSTRACT

Self-organization facilitates the formation of specific structures as a result of constituent interactions. In this study, the bottom of a 600 nm hole array photoresist template, which was deposited with a hydrophobic atom transfer radical polymerization (ATRP) initiator, was wetted by treatment with oxygen plasma. After the removal of the photoresist template, ring patterns of the ATRP initiator were formed at the interface between the hydrophobic and wetting regions. Poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) was grafted from the ring array of the initiator to immobilize gold nanoparticles (AuNPs) as a uniform ring array on a silicon substrate via repeated swelling/shrinking cycles. The localized surface plasmon resonance (LSPR) peak of the PDMAEMA-AuNP hybrid ring (PAHR) red-shifted after 12 swelling/shrinking cycles. In comparison to gold nanoparticles, scalable gold nanorings can effectively develop a variety of nanostructures to design LSPR-based sensors and optimize the sensing accuracy and stability. To detect epithelial cell adhesion molecules (EpCAM) during the structural change from a ring to a disk, antiEpCAM was anchored onto the PAHR as a biosensor during swelling/shrinking. The coupling of antiEpCAM and EpCAM led to asymptotical convergence from rings to disks as well as blue shifts of the LSPR peaks. Linear correlation between the blue shift and EpCAM concentration showed a limit of detection of ∼27 pg mL-1 and a linear range of 25-200 pg mL-1 for the detection of EpCAM within 30 min. The simple method of combining lithography and plasma technology provides a versatile platform for developing the scalable ring structure of AuNPs for highly sensitive and selective biosensing.


Subject(s)
Metal Nanoparticles , Surface Plasmon Resonance , Surface Plasmon Resonance/methods , Gold/chemistry , Epithelial Cell Adhesion Molecule , Metal Nanoparticles/chemistry
10.
J Am Chem Soc ; 144(45): 20561-20565, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36343210

ABSTRACT

Caution needs to be exercised in associating changes in plasmon-enhanced Raman spectra with chemical transformations. This is demonstrated through a detailed analysis of tip-enhanced Raman (TER) scattering from 4-mercaptopyridine (MPY) on gold. The substrate used consists of gold nanoplates atop a gold surface featuring heterogeneous grooves, all coated with a monolayer of MPY. The brightest spectra across the substrate exhibit features that can only be recovered by considering the generalized polarizability of oriented MPY molecules. The complex TER spectra we observe do not mark interfacial chemistry but rather multipolar TER scattering driven by local field gradients.


Subject(s)
Gold , Spectrum Analysis, Raman , Gold/chemistry , Pyridines/chemistry
11.
J Hazard Mater ; 439: 129567, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36104894

ABSTRACT

The separation of oily wastewater, specifically emulsions, is a crucial global issue. Possible strategies for the efficient separation of emulsified oil/water mixtures through sustainable and environmentally friendly materials have recently drawn considerable attention. In our study, we prepared superwetting water caltrop shell biochar (WCSB) via a top-lit-updraft carbonization procedure. The as-prepared WCSB was characterized by superhydrophilicity, underwater superoleophobicity, underoil superhydrophilicity, and underoil water adsorption ability. Because of its superwetting properties, WCSB was used for the separation of both surfactant-stabilized oil-in-water emulsions (SOIWEs) and surfactant-stabilized water-in-oil emulsions (SWIOEs) with very high fluxes (up to 74,700 and 241,000 L m-2 h-1 bar-1 for SOIWE and SWIOE, respectively). The separation performances were excellent, with oil contents in all SOIWE filtrates lower than 10 ppm and oil purities in all SWIOE filtrates higher than 99.99 wt%. Moreover, WCSB was applied to separate dye-spiked emulsions. Due to their high emulsion separation ability, sustainability, good biocompatibility, and ease of mass production, the as-prepared WCSBs have notable potential for utilitarian applications.


Subject(s)
Oils , Wastewater , Charcoal , Emulsions , Surface-Active Agents
12.
J Phys Chem Lett ; 13(31): 7350-7354, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35921600

ABSTRACT

This Perspective highlights recent advances in linear and nonlinear spectral nanoimaging. The described developments are motivated by the need to characterize molecular and material systems noninvasively with nanometer spatial and femtosecond temporal resolution. Indeed, the ability to image and chemically characterize heterogeneous interfaces with joint nano-femto resolution is a prerequisite to advancing our fundamental understanding of processes as diverse as heterogeneous catalysis, microbial communication, and energy flow in pristine/defect-containing low-dimensional quantum materials, to name a few. We describe pioneering work and recent demonstrations of (non)linear optical nanoimaging and nanospectroscopy, with an emphasis on high spatial resolution measurements conducted under ambient laboratory conditions.

13.
J Phys Chem A ; 126(34): 5832-5836, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35976736

ABSTRACT

Low-dimensional transition-metal dichalcogenides (TMDs) continue to comprise a subject of intense research because of their unique optical and electronic properties that may be harnessed in modern devices. Intense photoluminescence (PL) from few-/monolayer TMDs rendered PL-based micro- and nanospectroscopic characterization ideal in the quest to understand the correlation between structure and function in these materials. Nonlinear optical methods are by comparison far less utilized for this purpose. In this work, we describe an approach based on electronically resonant four-wave-mixing that allows spatio-spectral characterization of excitons in monolayer WSe2. Due to the coherent nature of the response that we exploit to trace exciton resonances, and recent demonstrations of electronic four-wave-mixing-based nanoimaging and nanospectroscopy, our present work is an important step toward characterizing TMDs on the nano-femto scale using light.

14.
Langmuir ; 38(14): 4310-4320, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35369694

ABSTRACT

Covalent organic polymer nanosheets (COPNs) endowed with porous networks and large surface areas in their structures offer great advantages over other materials in addressing environmental problems. In this study, fluorine-free superhydrophobic COPNs were designed and applied to selective dye absorption. Notably, COPNs selectively adsorb dyes with a high hydrophobic index (HI) and reject low HI dyes with maximum adsorption capacities of 361 and 263 mg/g for crystal violet and methylene blue, respectively. The adsorption isotherm model showed that the COPNs follow the Langmuir adsorption isotherm model and pseudo-second-order kinetics. Next, we explored the superhydrophobicity of the COPNs by in situ fabrication with melamine sponge (COPNs-MS), which incorporates the superhydrophobicity of COPNs [water contact angle (WCA) of >150°] with the structure and flexibility of the MS skeleton. The COPNs-MS shows various oil-adsorbing properties with good adsorption capacity (from 60 to 120 g/g) and also effectively separates various surfactant-stabilized emulsions with a separation efficiency of over 99%. The as-fabricated COPNs-MS retains its superhydrophobicity in various solvents and hazardous conditions (WCA ≥ 150°) and exhibits good flame retardancy and excellent compression properties with excellent antifouling property due to the superhydrophobic COPN coating. Furthermore, COPNs-MS also demonstrates excellent recyclability because the strong COPN coating in the MS skeleton retains its hydrophobicity. Therefore, our fluorine-free superhydrophobic COPNs are not only capable of selective dye adsorption but also exhibit very good oil adsorption and surfactant-stabilized emulsion separation performance.

15.
J Phys Chem Lett ; 12(44): 10761-10765, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34714090

ABSTRACT

Optical field localization at plasmonic tip-sample nanojunctions has enabled high-spatial-resolution chemical analysis through tip-enhanced linear optical spectroscopies, including Raman scattering and photoluminescence. Here, we illustrate that nonlinear optical processes, including parametric four-wave mixing (4WM), second-harmonic/sum-frequency generation (SHG and SFG), and two-photon photoluminescence (TPPL), can be enhanced at plasmonic junctions and spatiospectrally resolved simultaneously with few-nm spatial resolution under ambient conditions. Through a detailed analysis of our spectral nanoimages, we find that the efficiencies of the local nonlinear signals are determined by sharp tip-sample junction resonances that vary over the few-nanometer length scale. Namely, plasmon resonances centered at or around the different nonlinear signals are tracked through TPPL, and they are found to selectively enhance nonlinear signals with closely matched optical resonances.

16.
J Chem Phys ; 154(24): 241101, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34241355

ABSTRACT

We combine nanoindentation, herein achieved using atomic force microscopy-based pulsed-force lithography, with tip-enhanced Raman spectroscopy (TERS) and imaging. Our approach entails indentation and multimodal characterization of otherwise flat Au substrates, followed by chemical functionalization and TERS spectral imaging of the indented nanostructures. We find that the resulting structures, which vary in shape and size depending on the tip used to produce them, may sustain nano-confined and significantly enhanced local fields. We take advantage of the latter and illustrate TERS-based ultrasensitive detection/chemical fingerprinting as well as chemical reaction imaging-all using a single platform for nano-lithography, topographic imaging, hyperspectral dark field optical microscopy, and TERS.

17.
J Phys Chem Lett ; 12(14): 3535-3539, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33797918

ABSTRACT

Four-wave mixing at plasmonic tip-sample nanojunctions may be used to visualize plasmonic fields with sub-2 nm spatial resolution under ambient laboratory conditions. We illustrate the latter using a gold-coated atomic force microscopy probe irradiated with a pair of near-infrared femtosecond laser pulses and used to image plasmonic gold nanoplates and silver nanocubes. Through diagnostic polarization-dependent tip-only measurements, we illustrate that the four-wave mixing signal is localized to the tip apex. The apex-bound signal is further enhanced when the tip is located at specific locations near plasmonic nanoparticles. Overall, this work paves the way for visualizing chemical transformations as well as coherent electronic and vibrational dynamics with joint femtosecond temporal and few-nanometer spatial resolution under ambient conditions.

18.
Biosens Bioelectron ; 183: 113240, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33894484

ABSTRACT

Gradient properties facilitate the correlation of chemical and physical features of particles on the structure and adherent fate. Herein, performance enhancement is explored by particle gradient assembly patterning (PGAP) formed with magnetic field gradient (MFG) by magnetolithography (ML) in the electrochemiluminescence (ECL) measurement. Magnetic Fe3O4 nanoparticles were selected as nanocarriers and coated with a SiO2 layer for immobilization of primary antibodies. CdTe quantum dots with protein G coatings were selected as signal labels and conjugated with secondary antibodies. Magnetized 500-nm pillar, 1 µm- and 3 µm-line arrays of nickel were placed behind the working electrode modifying the sandwich-structured ECL immunosensor to form various PGAPs. A performance enhancement of ca. 2.4 times was observed when comparing the PGAP-free immunosensor to the researched gradient immunosensor, formed with a magnetized 3 µm-line array of nickel. This concludes that the sensitivity of an ECL immunosensor has been enhanced due to PGAP properties. When the immunosensor with PGAP properties was used to quantify human serum albumin, it exhibited a wide linear range (10-480 ng/mL), and a limit of detection of 10 ng/mL. PGAP properties, formed with MFG by ML, provides a simple method to improve the ECL performance.


Subject(s)
Biosensing Techniques , Cadmium Compounds , Metal Nanoparticles , Quantum Dots , Electrochemical Techniques , Humans , Immunoassay , Limit of Detection , Luminescent Measurements , Serum Albumin, Human , Silicon Dioxide , Tellurium
19.
J Phys Chem Lett ; 12(14): 3586-3590, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33819047

ABSTRACT

We interrogate para-mercaptobenzoic acid (MBA) molecules chemisorbed onto plasmonic silver nanocubes through tip-enhanced Raman (TER) spectral nanoimaging. Through a detailed examination of the spectra, aided by correlation analysis and density functional theory calculations, we find that MBA chemisorbs onto the plasmonic particles with at least two distinct configurations: S- and CO2-bound. High spatial resolution TER mapping allows us to distinguish between the distinct adsorption geometries with a pixel-limited (<5 nm) spatial resolution under ambient laboratory conditions.

20.
Polymers (Basel) ; 13(2)2021 Jan 10.
Article in English | MEDLINE | ID: mdl-33435232

ABSTRACT

In this study, two different types of hybrid porous organic polymers (POPs), polyhedral oligomeric silsesquioxane tetraphenylpyrazine (POSS-TPP) and tetraphenylethene (POSS-TPE), were successfully synthesized through the Friedel-Crafts polymerization of tetraphenylpyrazine (TPP) and tetraphenylethene (TPE), respectively, with octavinylsilsesquioxane (OVS) as node building blocks, in the presence of anhydrous FeCl3 as a catalyst and 1,2-dichloroethane at 60 °C. Based on N2 adsorption and thermogravimetric analyses, the resulting hybrid porous materials displayed high surface areas (270 m2/g for POSS-TPP and 741 m2/g for POSS-TPE) and outstanding thermal stabilities. Furthermore, as-prepared POSS-TPP exhibited a high carbon dioxide capacity (1.63 mmol/g at 298 K and 2.88 mmol/g at 273 K) with an excellent high adsorption capacity for iodine, reaching up to 363 mg/g, compared with the POSS-TPE (309 mg/g).

SELECTION OF CITATIONS
SEARCH DETAIL
...