Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 7153, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37935667

ABSTRACT

Inaccessibility of stored memory in ensemble cells through the forgetting process causes animals to be unable to respond to natural recalling cues. While accumulating evidence has demonstrated that reactivating memory-stored cells can switch cells from an inaccessible state to an accessible form and lead to recall of previously learned information, the underlying cellular and molecular mechanisms remain elusive. The current study used Drosophila as a model to demonstrate that the memory of one-trial aversive olfactory conditioning, although inaccessible within a few hours after learning, is stored in KCαß and retrievable after mild retraining. One-trial aversive conditioning triggers protein synthesis to form a long-lasting cellular memory trace, approximately 20 days, via creb in KCαß, and a transient cellular memory trace, approximately one day, via orb in MBON-α3. PPL1-α3 negatively regulates forgotten one-trial conditioning memory retrieval. The current study demonstrated that KCαß, PPL1-α3, and MBON-α3 collaboratively regulate the formation of forgotten one-cycle aversive conditioning memory formation and retrieval.


Subject(s)
Drosophila , Memory , Animals , Memory/physiology , Learning/physiology , Conditioning, Psychological/physiology , Mental Recall/physiology
2.
Nano Lett ; 23(24): 11614-11620, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-37937950

ABSTRACT

An analysis of the optical response of a GaN-based metalens was conducted alongside the utilization of two sequential artificial intelligence (AI) models in addressing the occasional issues of blurriness and color cast in captured images. The optical loss of the metalens in the blue spectral range was found to have resulted in the color cast of images. Autoencoder and CodeFormer sequential models were employed in order to correct the color cast and reconstruct image details, respectively. Said sequential models successfully addressed the color cast and reconstructed details for all of the allocated face image categories. Subsequently, the CIE 1931 chromaticity diagrams and peak signal-to-noise ratio analysis provided numerical evidence of the AI models' effectiveness in image reconstruction. Furthermore, the AI models can still repair the image without blue information. Overall, the integration of metalens and artificial intelligence models marks a breakthrough in enhancing the performance of full-color metalens-based imaging systems.

3.
Sci Rep ; 13(1): 1641, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36717640

ABSTRACT

We propose a hetero-nano-fin structure to further improve the efficiency of Pancharatnam-Berry phase metasurfaces. Two hetero-nano-fin types, MgF2/GaN and MgF2/Nb2O5, were investigated. The overall polarization conversion efficiency (PCE) improved from 52.7 to 54% for the MgF2/GaN nano-fin compared with the bare GaN nano-fin. The overall PCE of the Nb2O5 nano-fin was 1.7 times higher than that of the GaN nano-fin. The overall PCE improved from 92.4% up to 96% after the application of MgF2 antireflection. Moreover, the antireflection improves efficiency by an average of 4.3% in wavelengths from 450 to 700 nm. Although the increment of energy seems minimal, antireflection is crucial for a metasurface, not only enhancing efficiency but also reducing background signal of a meta-device.

4.
Nanomaterials (Basel) ; 12(12)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35745310

ABSTRACT

Flat optics, metasurfaces, metalenses, and related materials promise novel on-demand light modulation within ultrathin layers at wavelength scale, enabling a plethora of next-generation optical devices, also known as metadevices. Metadevices designed with different materials have been proposed and demonstrated for different applications, and the mass production of metadevices is necessary for metadevices to enter the consumer electronics market. However, metadevice manufacturing processes are mainly based on electron beam lithography, which exhibits low productivity and high costs for mass production. Therefore, processes compatible with standard complementary metal-oxide-semiconductor manufacturing techniques that feature high productivity, such as i-line stepper and nanoimprint lithography, have received considerable attention. This paper provides a review of current metasurfaces and metadevices with a focus on materials and manufacturing processes. We also provide an analysis of the relationship between the aspect ratio and efficiency of different materials.

5.
Materials (Basel) ; 15(6)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35329596

ABSTRACT

In this work, tunable plasmonic liquid gallium nanoparticles (Ga NPs) were prepared through surface anodizing of the particles. Shape deformation of the Ga NPs accompanied with dimpled surface topographies could be induced during electrochemical anodization, and the formation of the anodic oxide shell helps maintain the resulting change in the particle shape. The nanoscale dimple-like textures led to changes in the localized surface plasmon resonance (LSPR) wavelength. A maximal LSPR red-shift of ~77 nm was preliminarily achieved using an anodization voltage of 0.7 V. The experimental results showed that an increase in the oxide shell thickness yielded a negligible difference in the observed LSPR, and finite-difference time-domain (FDTD) simulations also suggested that the LSPR tunability was primarily determined by the shape of the deformed particles. The extent of particle deformation could be adjusted in a very short period of anodization time (~7 s), which offers an efficient way to tune the LSPR response of Ga NPs.

6.
Nanomaterials (Basel) ; 11(4)2021 Apr 11.
Article in English | MEDLINE | ID: mdl-33920386

ABSTRACT

In this paper, an inorganic polymer composite film is proposed as an effective radiative cooling device. The inherent absorption is enhanced by choosing an appropriately sized SiO2 microsphere with a diameter of 6 µm. The overall absorption at the transparent window of the atmosphere is higher than 90%, as the concentration of SiO2-PMMA composite is 35 wt%. As a result, an effective radiative device is made by a spin coating process. Moreover, the device is stacked on the cold side of a thermoelectric generator chip. It is found that the temperature gradient can be increased via the effective radiative cooling process. An enhanced Seebeck effect is observed, and the corresponding output current can be enhanced 1.67-fold via the photonic-assisted radiative cooling.

7.
Nanomaterials (Basel) ; 11(3)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652821

ABSTRACT

In this study, the phase modulation ability of a dielectric Pancharatnam-Berry (PB) phase metasurface, consisting of nanofins, is theoretically analyzed. It is generally considered that the optical thickness of the unit cell of a PB-phase metasurface is λ/2, i.e., a half-waveplate for polarization conversion. It is found that the λ/2 is not essential for achieving a full 2π modulation. Nevertheless, a λ/2 thickness is still needed for a high polarization conversion efficiency. Moreover, a gradient phase metasurface is designed. With the help of the particle swarm optimization (PSO) method, the wavefront errors of the gradient phase metasurface are reduced by fine-tuning the rotation angle of the nanofins. The diffraction efficiency of the gradient phase metasurface is thus improved from 73.4% to 87.3%. This design rule can be utilized to optimize the efficiency of phase-type meta-devices, such as meta-deflectors and metalenses.

8.
Opt Express ; 28(12): 18018-18026, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32680003

ABSTRACT

In this study, the optical properties of a meta-GMR consisting of a metasurface stacked on a planar dielectric slab waveguide were theoretically investigated. Two different metasurfaces, namely chiral split-ring resonator dimer arrays with/without a rod-shaped antenna, were investigated and compared. Conventional GMR filters utilize gratings to couple the free-space electromagnetic field to the waveguide. The highly dispersive nature of grating leads to low angular tolerance. Here, the grating is replaced by metasurfaces. The metasurface unit cell can be regarded as a polarizable dipole that couples the free-space electromagnetic field to the waveguide and decouples the waveguide mode to the radiation modes. Based on the localized nature of the resonant metasurfaces, the metasurface/GMR hybrid mode exhibits a superior angular tolerance as compared with a conventional GMR filter. This study can open a new avenue to tailor the optical properties of GMR-based devices.

9.
Aging Cell ; 18(4): e12989, 2019 08.
Article in English | MEDLINE | ID: mdl-31183966

ABSTRACT

Multicellular signals are altered in the processes of both aging and neurodegenerative diseases, including Alzheimer's disease (AD). Similarities in behavioral and cellular functional changes suggest a common regulator between aging and AD that remains undetermined. Our genetics and behavioral approaches revealed the regulatory role of Akt in both aging and AD pathogenesis. In this study, we found that the activity of Akt is upregulated during aging through epidermal growth factor receptor activation by using the fruit fly as an in vivo model. Downregulation of Akt in neurons improved cell survival, locomotor activity, and starvation challenge in both aged and Aß42-expressing flies. Interestingly, increased cAMP levels attenuated both Akt activation-induced early death and Aß42-induced learning deficit in flies. At the molecular level, overexpression of Akt promoted Notch cleavage, suggesting that Akt is an endogenous activity regulator of γ-secretase. Taken together, this study revealed that Akt is involved in the aging process and Aß toxicity, and manipulating Akt can restore both neuronal functions and improve behavioral activity during the processes of aging and AD pathogenesis.


Subject(s)
Aging/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Drosophila melanogaster/metabolism , Peptide Fragments/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Aging/pathology , Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/genetics , Animals , Animals, Genetically Modified , Cell Survival/genetics , Cyclic AMP/metabolism , Disease Models, Animal , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Locomotion/genetics , Longevity/genetics , Neurons/metabolism , Peptide Fragments/genetics , Proto-Oncogene Proteins c-akt/genetics , RNA Interference , Receptors, Notch/metabolism
10.
Adv Mater ; 31(7): e1806479, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30549339

ABSTRACT

The second harmonic generation (SHG) of vertical and planar split-ring resonators (SRRs) that are broken centro-symmetry configurations at the interface of metal surface and air is investigated. Strong interactions, better electromagnetic field confinements, and less leakage into the substrate for vertical SRRs are found. Experimental results show a 2.6-fold enhancement of SHG nonlinearity, which is in good agreement with simulations and calculations. Demonstrations of 3D metastructures and vertical SRRs with strong SHG nonlinearity majorly result from magnetic dipole and electric quadrupole clearly provides potential applications for photonics and sensing.

11.
Sci Rep ; 8(1): 7684, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29769619

ABSTRACT

In this paper, a tunable mid-infrared metasurface based on VO2 phase change material is proposed for temperature control. The proposed structure consisting of a VO2/SiO2/VO2 cavity supports a thermally switchable Fabry-Perot-like resonance mode at the transparency window of the atmosphere. Theoretically, the radiative cooling power density of the proposed metasurface can be switched to four-fold as the device temperature is below/above the phase change temperature of VO2. Besides radiative cooling, a passive temperature control application based on this huge cooling power switching ability is theoretically demonstrated. We believe the proposed device can be applied for small radiative cooling and temperature control applications.

12.
Sci Rep ; 7: 42076, 2017 02 06.
Article in English | MEDLINE | ID: mdl-28165026

ABSTRACT

A high Q-value reflective type metasurface consisting of 1D Au nanorods, a SiO2 spacer and a Au back reflector is demonstrated. It is shown that the sideband of the resonant mode can be suppressed as the resonant wavelength close to the phonon absorption of SiO2. By combining both designed structured resonance and inherent property of the based materials, a low angle-dependent metasurface with a Q-value of 40 has been demonstrated. The proposed structure will be useful for high sensitivity sensing and narrow band thermal emitter.

13.
Opt Express ; 24(16): 18382-7, 2016 Aug 08.
Article in English | MEDLINE | ID: mdl-27505801

ABSTRACT

In this paper, a narrow band thermal emission at 10 µm is demonstrated using a one dimensional metasurface. The proposed metasurface structure provides magnetic resonance mode that enhances the phonon absorption of SiO2. The proposed metasurface thermal emitter shows a Lambertian distribution. Additionally, 5.8-folds enhancement of emissivity is achieved by optimizing the cavity thickness of the metasurfaces. This type of thermal emitter will be useful for IR sensing applications.

14.
Article in English | MEDLINE | ID: mdl-34135533

ABSTRACT

We develop a significance test that determines whether the component of uncertainty due to the finite number of stepped mode-stirring samples or the component due to the lack of spatial uniformity dominates for a particular chamber set-up and stirring sequence, as well as expressions for uncertainty for both cases. The significance test is illustrated with a measurement example comparing unloaded and loaded chambers for the measurement of a large-form-factor machine-to-machine device transmitting the W-CDMA protocol. Based on this example, we illustrate a method that allows users to estimate the minimum number of stepped mode-stirring samples needed to ensure that the component of uncertainty due to spatial uniformity dominates for a given chamber set-up, allowing use of a simplified expression for uncertainty.

15.
Opt Express ; 23(19): A1245-52, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26406753

ABSTRACT

The contribution of graphene oxide (GO) on photocatalytic effects of Cu(x)O on plasmonic Au is investigated. It is found that the H(2) evolution rate from pure water is enhanced 1.4 fold using the visible-active Cu(x)O/GO photocatalyst, as compared with Cu(x)O without GO. In addition, the intensity of photoluminescence of Cu(x)O/GO can be enhanced as much as 2.85 fold as compared with Cu(x)O without GO. The enhancement is due to the negative fixed charge in GO, which can passivate the surface of Cu(x)O and suppress recombination of minority electrons at the surface. The results from optical characterization in this study can help to prove the proposed mechanism of passivation.

16.
Nano Lett ; 15(5): 3122-7, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25844757

ABSTRACT

We report a phase-modulated multicolor meta-hologram (MCMH) that is polarization-dependent and capable of producing images in three primary colors. The MCMH structure is made of aluminum nanorods that are arranged in a two-dimensional array of pixels with surface plasmon resonances in red, green, and blue. The aluminum nanorod array is patterned on a 30 nm thick SiO2 spacer layer sputtered on top of a 130 nm thick aluminum mirror. With proper design of the structure, we obtain resonances of narrow bandwidths to allow for implementation of the multicolor scheme. Taking into account of the wavelength dependence of the diffraction angle, we can project images to specific locations with predetermined size and order. With tuning of aluminum nanorod size, we demonstrate that the image color can be continuously varied across the visible spectrum.


Subject(s)
Aluminum/chemistry , Holography/methods , Nanotechnology , Nanotubes/chemistry , Color , Light , Silicon Dioxide/chemistry , Surface Plasmon Resonance
17.
Sensors (Basel) ; 14(3): 5198-206, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24625743

ABSTRACT

In this study, a polarization-control setup for intensity-resolved guided mode resonance sensors is proposed and demonstrated experimentally. The experimental results are in good agreement with the simulation data based on rigorous coupled wave approach calculations. The proposed intensity-resolved measurement setup transfers polarization ellipses, which are produced from guided mode resonance to a linear polarization state under a buffer solution condition, and then suppresses the signals to dark using a polarization-control set. Hence, any changes in the refractive index results in an increase in the intensity signals. Furthermore, no wavelength-resolved or angular-resolved measurement is needed in this scheme. According to the experimental results, a wide linear detection range of 0.014 refractive index units is achieved and the limit of detection is 1.62E-4 RIU.


Subject(s)
Light , Surface Plasmon Resonance/instrumentation , Computer Systems , Refractometry
18.
Opt Express ; 22(2): 1313-8, 2014 Jan 27.
Article in English | MEDLINE | ID: mdl-24515136

ABSTRACT

In this paper, the optical properties of a plasmonic nanoantenna array have been investigated. The proposed plasmonic structure presents omnidirectional resonance properties, such as omnidirectional reflection dip and omnidirectional emission peak. In addition, the reflection and emission of the plasmonic nanoantenna array with various metal/insulator/metal cavity thicknesses are theoretically and experimentally investigated. The simulation reveals a fair agreement with the experimental results.

19.
Nano Lett ; 14(1): 225-30, 2014 Jan 08.
Article in English | MEDLINE | ID: mdl-24329425

ABSTRACT

Holograms, the optical devices to reconstruct predesigned images, show many applications in our daily life. However, applications of hologram are still limited by the constituent materials and therefore their working range is trapped at a particular electromagnetic region. In recent years, the metasurfaces, an array of subwavelength antenna with varying sizes, show the abilities to manipulate the phase of incident electromagnetic wave from visible to microwave frequencies. Here, we present a reflective-type and high-efficiency meta-hologram fabricated by metasurface for visible wavelength. Using gold cross nanoantennas as building blocks to construct our meta-hologram devices with thickness ∼ λ/4, the reconstructed images of meta-hologram show polarization-controlled dual images with high contrast, functioning for both coherent and incoherent light sources within a broad spectral range and under a wide range of incidence angles. The flexibility demonstrated here for our meta-hologram paves the road to a wide range of applications related to holographic images at arbitrary electromagnetic wave region.


Subject(s)
Gold/chemistry , Holography/instrumentation , Lenses , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Nanotechnology/instrumentation , Refractometry/instrumentation , Equipment Design , Equipment Failure Analysis
20.
Opt Express ; 21 Suppl 2: A221-8, 2013 Mar 11.
Article in English | MEDLINE | ID: mdl-23482283

ABSTRACT

In this paper, Cu(x)O photocatalyst on plasmonic nanoporous Au film is proposed to enhancing the H(2) evolution rate of pure water splitting. The nanoporous Au film can simultaneously provide surface-enhanced absorption and built-in potential. The reflection spectrum shows that the surface plasmon (SP) assisted absorption wavelength of the Cu(x)O on the nanoporous Au film can be modified by changing the annealing temperature. It is found that the enhancement of the H(2) evolution rate highly depends on the SP-assisted absorption. As the annealing temperature is 220 ° C, the H(2) evolution rate is 58 µmol hr(-1) under the condition that the device area is 0.25 cm(2).

SELECTION OF CITATIONS
SEARCH DETAIL
...