Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.201
Filter
1.
iScience ; 27(6): 110095, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38947506

ABSTRACT

Sulfate-reducing bacteria (SRB) are ubiquitously distributed across various biospheres and play key roles in global sulfur and carbon cycles. However, few deep-sea SRB have been cultivated and studied in situ, limiting our understanding of the true metabolism of deep-sea SRB. Here, we firstly clarified the high abundance of SRB in deep-sea sediments and successfully isolated a sulfate-reducing bacterium (zrk46) from a cold seep sediment. Our genomic, physiological, and phylogenetic analyses indicate that strain zrk46 is a novel species, which we propose as Pseudodesulfovibrio serpens. We found that supplementation with sulfate, thiosulfate, or sulfite promoted strain zrk46 growth by facilitating energy production through the dissimilatory sulfate reduction, which was coupled to the oxidation of organic matter in both laboratory and deep-sea conditions. Moreover, in situ metatranscriptomic results confirmed that other deep-sea SRB also performed the dissimilatory sulfate reduction, strongly suggesting that SRB may play undocumented roles in deep-sea sulfur cycling.

2.
Adv Sci (Weinh) ; : e2400140, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973255

ABSTRACT

Most clinical PARP inhibitors (PARPis) trap PARP1 in a chromatin-bound state, leading to PARPi-mediated cytotoxicity. PARPi resistance impedes the treatment of ovarian cancer in clinical practice. However, the mechanism by which cancer cells overcome PARP1 trapping to develop PARPi resistance remains unclear. Here, it is shown that high levels of KAT6A promote PARPi resistance in ovarian cancer, regardless of its catalytic activity. Mechanistically, the liquid-liquid phase separation (LLPS) of KAT6A, facilitated by APEX1, inhibits the cytotoxic effects of PARP1 trapping during PARPi treatment. The stable KAT6A-PARP1-APEX1 complex reduces the amount of PARP1 trapped at the DNA break sites. In addition, inhibition of KAT6A LLPS, rather than its catalytic activity, impairs DNA damage repair and restores PARPi sensitivity in ovarian cancer both in vivo and in vitro. In conclusion, the findings demonstrate the role of KAT6A LLPS in fostering PARPi resistance and suggest that repressing KAT6A LLPS can be a potential therapeutic strategy for PARPi-resistant ovarian cancer.

3.
Adv Sci (Weinh) ; : e2403127, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970212

ABSTRACT

Hybrid excitons, characterized by their strong oscillation strength and long lifetimes, hold great potential as information carriers in semiconductors. They offer promising applications in exciton-based devices and circuits. MoSe2/WS2 heterostructures represent an ideal platform for studying hybrid excitons, but how to regulate the exciton lifetime has not yet been explored. In this study, layer hybridization is modulated by applying electric fields parallel or antiparallel to the dipole moment, enabling us to regulate the exciton lifetime from 1.36 to 4.60 ns. Furthermore, the time-resolved photoluminescence decay traces are measured at different excitation power. A hybrid exciton annihilation rate of 8.9 × 10-4 cm2 s-1 is obtained by fitting. This work reveals the effects of electric fields and excitation power on the lifetime of hybrid excitons in MoSe2/WS2 1.5° moiré heterostructures, which play important roles in high photoluminescence quantum yield optoelectronic devices based on transition-metal dichalcogenides heterostructures.

4.
Nat Commun ; 15(1): 5681, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971813

ABSTRACT

Fast photoinduced charge separation (CS) and long-lived charge-separated state (CSS) in small-molecules facilitate light-energy conversion, while simultaneous attainment of both remains challenging. Here we accomplish this through aggregation based on fullerene-indacenodithiophene dyads. Transient absorption spectroscopy reveals that, compared to solution, the CS time in aggregates is accelerated from 41.5 ps to 0.4 ps, and the CSS lifetime is prolonged from 311.4 ps to 40 µs, indicating that aggregation concomitantly promotes fast CS and long-lived CSS. Fast CS arises from the hot charge-transfer states dissociation, opening up additional resonant channels to free carriers (FCs); subsequently, charge recombination into intramolecular triplet CSS becomes favorable mediated by spin-uncorrelated FCs. Different from fullerene/indacenodithiophene blends, the unique CS mechanism in dyad aggregates reduces the long-lived CSS dependence on molecular order, resulting in a CSS lifetime 200 times longer than blends. This endows the dyad aggregates to exhibit both photoelectronic switch properties and superior photocatalytic capabilities.

5.
Anim Reprod Sci ; 268: 107561, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39004014

ABSTRACT

Zig-zag eel (Mastacembelus armatus (2 n = 48)) and Spiny eel (Sinobdella sinensis (2 n = 48)) are two species of the Mastacembelidae family commonly found in southern China. Hybridization between the two has a very high deformity rate and a very low hatching rate. In order to investigate the reasons for this, the first hybridization between M. armatus and S. sinensis was carried out using artificial insemination, and the embryonic development of the hybrid offspring was examined using microphotography, and the malformations of the hybrid offspring were investigated by transcriptomics. The experiments showed that the average egg production was 4265.7 ± 322.94 (Mean ± SD), the average fertilization rate of hybrid offspring was 98.67 ± 0.58 % (Mean ± SD), the hatching rate was 12.06 ± 3.44 % (Mean ± SD), the deformity rate was 98.15 ± 3.21 % (Mean ± SD), and the embryonic development successively went through the five main stages of fertilized egg, egg cleavage, embryo formation, organogenesis, and exertion of membranes. Transcriptomics showed that the expression of NAD(P)H-related enzyme activity DEGs was increased, and many DEGs related to cell signaling molecule transmission and metabolic regulation are enriched in KEGG pathways, such as IL-17 signaling pathway, Osteoclast differentiation, TNF signaling pathway and MAPK signaling pathway. etc. The major types of DEGs corresponded to those coding for proteins. This study suggests that the high malformation rate in hybrid offspring may be caused by impaired synthesis of proteins during embryonic development.

6.
Cell Signal ; : 111297, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004326

ABSTRACT

Bladder cancer (BC) is one of the most prevalent malignant tumors worldwide, and the incidence is especially higher in males. Extensive evidence has demonstrated the pivotal role of circular RNAs (circRNAs) in BC progression. However, the exact regulatory mechanism of circRNAs in BC remains incompletely elucidated and warrants further exploration. This study screened a novel circRNA-circPGM5 from thousands of circRNAs by high-throughput sequencing. We found that circPGM5, originating from the PGM5 gene, was significantly lower expressed in BC tissues. Quantitative real-time PCR (qRT-PCR) verified that circPGM5 showed relatively low expression in 50 pairs of BC tissues and EJ and T24 cells. Notably, circPGM5 expression was correlated with stage, grade, and lymphatic metastasis of BC. Through RNA-FISH assay, we confirmed that circPGM5 predominantly localized in the cytoplasm. Functionally, overexpression of circPGM5 inhibited the proliferation, migration, and invasion of BC cells in vitro. Remarkably, circPGM5 demonstrated markedly significant tumor growth and metastasis suppression in vivo. Mechanistically, we discovered that circPGM5 upregulated the mitogen-activated protein kinase 10 (MAPK10) expression by influencing the oncogenic miR-21-5p activity through miR-21-5p absorption. This modulation of MAPK10 impacted the phosphorylation of the tumor suppressor Foxo3a in BC. In conclusion, our findings uncovered the tumor-suppressing role of circPGM5 in BC via the miR-21-5p/MAPK10/Foxo3a axis.

7.
Nanoscale ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39005077

ABSTRACT

The interlayer twist angle has a direct effect on exciton lifetimes in van der Waals heterostructures. At small angles, the interlayer and intralayer excitons in MoSe2/WS2 heterostructures are hybridized, resulting in hybridized excitons with long lifetimes and strong resonance. However, the study of twist-angle modulation of hybridized exciton lifetimes is still insufficient, leading to an unclear understanding of the mechanism through which the twist angle between layers influences the lifetime of hybridized excitons. Here, we observed the formation of hybridized excitons by constructing MoSe2/WS2 heterostructures with different twist angles. The exciton lifetime is found to increase from 0.5 ns to 3.3 ns when the twist angle is reduced from 12° to 1°. This work provides a new perspective on the modulation of the exciton lifetime, enabling further exploration in improving the efficiency of optoelectronic devices.

8.
Adv Exp Med Biol ; 1445: 179-188, 2024.
Article in English | MEDLINE | ID: mdl-38967760

ABSTRACT

Acute myeloid leukaemia (AML) is a collection of genetically diverse diseases characterised by abnormal proliferation of immature haematopoietic cells and disruption of normal haematopoiesis. Myeloid cells and lymphocytes originate from different haematopoietic precursors within the bone marrow. It has been traditionally assumed that myeloid cells cannot produce immunoglobulin (Ig), a marker of B cells and plasma cells. However, in recent years, all five Ig classes have been detected in CD34+ haematopoietic stem cells, mature monocytes and neutrophils, differentiated macrophages and tumour-associated macrophages, acute myeloid leukaemia cell lines, as well as myeloblasts of AML. The rearranged V(D)J sequences exhibit unique restricted or biased V gene usage and evidence of somatic mutation. Furthermore, AML-derived Igs could promote cell proliferation, induce apoptosis, and enhance migration. Elevated levels of Ig expression predict inferior clinical outcomes. These findings indicate that AML-derived Ig plays a role in AML pathogenesis and progression, and could serve as a novel biomarker for risk stratification, disease monitoring, and targeted therapy. In this chapter, we provide a comprehensive review of recent literature on the expression, function, and significance of non B cell-derived Ig in the haematological system, with a focus on AML.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Immunoglobulins/genetics , Immunoglobulins/metabolism , Animals
9.
Analyst ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995156

ABSTRACT

Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer and a major cause of cancer-related mortality worldwide. Small extracellular vesicles (sEVs) are heterogeneous populations of membrane-structured vesicles that can be found in many biological fluids and are currently considered as a potential source of disease-associated biomarkers for diagnosis. The purpose of this study was to define the proteomic and phosphoproteomic landscape of urinary sEVs in patients with HCC. Mass spectrometry-based methods were used to detect the global proteome and phosphoproteome profiles of sEVs isolated by differential ultracentrifugation. Label-free quantitation analysis showed that 348 differentially expressed proteins (DEPs) and 548 differentially expressed phosphoproteins (DEPPs) were identified in the HCC group. Among them, multiple phosphoproteins related to HCC, including HSP90AA1, IQGAP1, MTOR, and PRKCA, were shown to be upregulated in the HCC group. Pathway enrichment analysis indicated that the upregulated DEPPs participate in the regulation of autophagy, proteoglycans in cancer, and the MAPK/mTOR/Rap1 signaling pathway. Furthermore, kinase-substrate enrichment analysis revealed activation of MTOR, AKT1, MAP2Ks, and MAPKs family kinases in HCC-derived sEVs, indicating that dysregulation of the MAPK and mTOR signaling pathways may be the primary sEV-mediated molecular mechanisms involved in the development and progression of HCC. This study demonstrated that urinary sEVs are enriched in proteomic and phosphoproteomic signatures that could be further explored for their potential use in early HCC diagnostic and therapeutic applications.

10.
Light Sci Appl ; 13(1): 154, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977660

ABSTRACT

A regrowth method was used to synthesize large-sized colloidal quantum dots (CQDs). With the assistance of doping engineering, the synthesized CQD detectors demonstrate exceptional long-wavelength infrared detection performance, reaching up to 18 µm, significantly extending the spectral response limit for CQD-based infrared detectors. These detectors also achieve a reasonably high detectivity of 6.6 × 108 Jones.

11.
J Colloid Interface Sci ; 676: 177-185, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39024818

ABSTRACT

The pentlandite Fe5Ni4S8(abbreviated as FNS) is not efficient for water splitting because of its inferior performance for the oxygen evolution reaction (OER). This issue originates from the low activity and instability of FNS during the OER process but can be solved through appropriate doping. Herein, a P-doping strategy based on annealing in the presence of NaH2PO2as a phosphorus source upstream was employed on FNS to enhance its activity and stability toward OER. The results demonstrated fine-tuned electronic structures of Fe and Ni in FNS through P-doping, resulting in suppressed Fe leaching,improved electrical conductivity of FNS, and easier formation of NiOOH on the surface of the catalyst. In turn, these features enhanced the OER activity and stability. The optimal P-doped FNS catalyst FNSP-40 exhibited a 4-fold greater electrochemical surface area compared to that of FNS, accompanied by an overpotential of 235 mV at 10 mA cm-2. The optimized FNSP-40 catalyst was used as an anode, and platinum-decorated FNS was used as a cathode. This combination demonstrated an electrolysis performance with a cell voltage of 1.57 V, reaching a current density of 100 mA cm-2,which indicates efficient operation. The advantages of P-doping engineering were also verified in simulated seawater with enhanced OER performance. Overall, the proposed strategy looks promising for the fabrication of pentlandite-structured catalysts for efficient alkaline water and seawater oxidation.

12.
Chem Commun (Camb) ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028126

ABSTRACT

Metal-organic frameworks (MOFs) have become a hot spot in the area of functional materials and have undergone rapid development in a wide range of fields in the 21st century. However, the scalable application of MOFs is still constrained by high production cost at the front end. Additionally, systematic discussion of the reuse of spent MOFs is lacking. Encouragingly, an increasing number of studies have been focusing on the low-cost production and recycling of MOF-based materials, providing feasible solutions for resource recovery and reduction. To stimulate future enthusiasm and interest in realizing the blue economy of MOFs, ranging from front-end production to terminal disposal, we have presented and summarized the state-of-the-art progress in the sustainable synthesis, separation, and reuse of MOFs. Based on the existing challenges, we also propose fit-for-purpose future directions in the MOF field to move toward blue economy.

13.
Sci Bull (Beijing) ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38942699

ABSTRACT

Realizing large materials models has emerged as a critical endeavor for materials research in the new era of artificial intelligence, but how to achieve this fantastic and challenging objective remains elusive. Here, we propose a feasible pathway to address this paramount pursuit by developing universal materials models of deep-learning density functional theory Hamiltonian (DeepH), enabling computational modeling of the complicated structure-property relationship of materials in general. By constructing a large materials database and substantially improving the DeepH method, we obtain a universal materials model of DeepH capable of handling diverse elemental compositions and material structures, achieving remarkable accuracy in predicting material properties. We further showcase a promising application of fine-tuning universal materials models for enhancing specific materials models. This work not only demonstrates the concept of DeepH's universal materials model but also lays the groundwork for developing large materials models, opening up significant opportunities for advancing artificial intelligence-driven materials discovery.

14.
J Robot Surg ; 18(1): 261, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904929

ABSTRACT

This study aims to compare the perioperative, oncological, and functional outcomes of perineal hydrodissection (HD) with standard treatment (ST) in patients undergoing robot-assisted radical prostatectomy. We performed an exhaustive search in databases such as PubMed, Embase, Web of Science, and the Cochrane Library, seeking English-language studies relevant to our research question, with a cutoff date of April 2024. The pooled results were assessed using the weighted mean differences (WMDs), standardized mean differences (SMDs), and odds ratios (ORs) metrics. We also performed a sensitivity analysis. The meta-analysis was conducted utilizing Stata/MP version 18 software. The study was registered with PROSPERO (ID: CRD 42024536400). We included a total of five studies (three RCTs and two retrospective studies). According to the data from the Meta-analysis, the HD group showed positive effects in promoting urinary continence (OR 2.64, 95% CI 1.36, 5.12; p = 0.004 < 0.05) and erectile function (SMD 0.92, 95%CI 0.56, 1.27; p < 0.05) within 3 months after surgery. However, no notable disparities were observed in terms of operative time, estimated blood loss, bilateral nerve-sparing rate, or the rate of positive surgical margin. Perineal hydrodissection can be safely applied in robot-assisted radical prostatectomy (RARP), offering a distinct advantage in functional outcomes compared to those who undergo standard robot-assisted prostatectomy alone.


Subject(s)
Perineum , Prostatectomy , Prostatic Neoplasms , Robotic Surgical Procedures , Humans , Prostatectomy/methods , Robotic Surgical Procedures/methods , Male , Perineum/surgery , Prostatic Neoplasms/surgery , Treatment Outcome , Urinary Incontinence/etiology , Postoperative Complications/etiology
15.
Autoimmunity ; 57(1): 2360490, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38836341

ABSTRACT

The heterogeneity of the T cell receptor (TCR) repertoire critically influences the autoimmune response in obstetric antiphospholipid syndrome (OAPS) and is intimately associated with the prophylaxis of autoimmune disorders. Investigating the TCR diversity patterns in patients with OAPS is thus of paramount clinical importance. This investigation procured peripheral blood specimens from 31 individuals with OAPS, 21 patients diagnosed with systemic lupus erythematosus (SLE), and 22 healthy controls (HC), proceeding with TCR repertoire sequencing. Concurrently, adverse pregnancy outcomes in the OAPS cohort were monitored and documented over an 18-month timeframe. We paid particular attention to disparities in V/J gene utilisation and the prevalence of shared clonotypes amongst OAPS patients and the comparative groups. When juxtaposed with observations from healthy controls and SLE patients, immune repertoire sequencing disclosed irregular T- and B-cell profiles and a contraction of diversity within the OAPS group. Marked variances were found in the genomic rearrangements of the V gene, J gene, and V/J combinations. Utilising a specialised TCRß repertoire, we crafted a predictive model for OAPS classification with robust discriminative capability (AUC = 0.852). Our research unveils alterations in the TCR repertoire among OAPS patients for the first time, positing potential covert autoimmune underpinnings. These findings nominate the TCR repertoire as a prospective peripheral blood biomarker for the clinical diagnosis of OAPS and may offer valuable insights for advancing the understanding of OAPS immunologic mechanisms and prognostic outcomes.


Subject(s)
Antiphospholipid Syndrome , Biomarkers , Receptors, Antigen, T-Cell , Humans , Antiphospholipid Syndrome/immunology , Antiphospholipid Syndrome/diagnosis , Antiphospholipid Syndrome/genetics , Antiphospholipid Syndrome/blood , Female , Pregnancy , Adult , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/blood , Pregnancy Complications/immunology , Pregnancy Complications/genetics , Pregnancy Complications/diagnosis
16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 693-701, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38926955

ABSTRACT

OBJECTIVE: To analyze the factors affecting overall survival (OS) of adult patients with core-binding factor acute myeloid leukemia (CBF-AML) and establish a prediction model. METHODS: A total of 216 newly diagnosed patients with CBF-AML in the First Affiliated Hospital of Zhengzhou University from May 2015 to July 2021 were retrospectively analyzed. The 216 CBF-AML patients were divided into the training and the validation cohort at 7∶3 ratio. The Cox regression model was used to analyze the clinical factors affecting OS. Stepwise regression was used to establish the optimal model and the nomogram. Receiver operating characteristic (ROC) curve, calibration curve and decision curve analysis (DCA) were used to evaluate the model performance. RESULTS: Age(≥55 years old), peripheral blood blast(≥80%), fusion gene (AML1-ETO), KIT mutations were identified as independent adverse factors for OS. The area under the ROC curve at 3-year was 0.772 and 0.722 in the training cohort and validation cohort, respectively. The predicted value of the calibration curve is in good agreement with the measured value. DCA shows that this model performs better than a single factor. CONCLUSION: This prediction model is simple and feasible, and can effectively predict the OS of CBF-AML, and provide a basis for treatment decision.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/diagnosis , Prognosis , Retrospective Studies , Middle Aged , Female , Male , Mutation , ROC Curve , Core Binding Factors/genetics , Nomograms , Adult , RUNX1 Translocation Partner 1 Protein/genetics , Proto-Oncogene Proteins c-kit/genetics , Proportional Hazards Models , Oncogene Proteins, Fusion/genetics , Core Binding Factor Alpha 2 Subunit/genetics
17.
Genes (Basel) ; 15(6)2024 May 26.
Article in English | MEDLINE | ID: mdl-38927629

ABSTRACT

MYB transcription factors (TFs) play vital roles in plant growth, development, and response to adversity. Although the MYB gene family has been studied in many plant species, there is still little known about the function of R2R3 MYB TFs in sweet potato in response to abiotic stresses. In this study, an R2R3 MYB gene, IbMYB330 was isolated from sweet potato (Ipomoea batatas). IbMYB330 was ectopically expressed in tobacco and the functional characterization was performed by overexpression in transgenic plants. The IbMYB330 protein has a 268 amino acid sequence and contains two highly conserved MYB domains. The molecular weight and isoelectric point of IbMYB330 are 29.24 kD and 9.12, respectively. The expression of IbMYB330 in sweet potato is tissue-specific, and levels in the root were significantly higher than that in the leaf and stem. It showed that the expression of IbMYB330 was strongly induced by PEG-6000, NaCl, and H2O2. Ectopic expression of IbMYB330 led to increased transcript levels of stress-related genes such as SOD, POD, APX, and P5CS. Moreover, compared to the wild-type (WT), transgenic tobacco overexpression of IbMYB330 enhanced the tolerance to drought and salt stress treatment as CAT activity, POD activity, proline content, and protein content in transgenic tobacco had increased, while MDA content had decreased. Taken together, our study demonstrated that IbMYB330 plays a role in enhancing the resistance of sweet potato to stresses. These findings lay the groundwork for future research on the R2R3-MYB genes of sweet potato and indicates that IbMYB330 may be a candidate gene for improving abiotic stress tolerance in crops.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Ipomoea batatas , Nicotiana , Plant Proteins , Plants, Genetically Modified , Transcription Factors , Ipomoea batatas/genetics , Ipomoea batatas/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Plants, Genetically Modified/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Salt Tolerance/genetics , Stress, Physiological/genetics , Salt Stress/genetics
18.
Opt Express ; 32(11): 19665-19675, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859096

ABSTRACT

This study demonstrates a differential absorption lidar (DIAL) for CO2 that integrates both single-photon direct detection and coherent detection. Based on all-fiber 1572 nm wavelength devices, this compact lidar achieves detection of CO2 concentration, wind field, and single photon aerosol backscattering signal. First, by comparing DIAL with VAISALA-GMP343, the concentration deviation between the two devices is less than 5 ppm, proving the accuracy of the DIAL. Second, through the scanning detection experiment in Chaohu Lake, Hefei, not only the CO2 concentration between single-photon detection and coherent detection but also the wind field was obtained, proving the multifunctionality and stability of the DIAL. Benefiting from the advantages of combined the two detection methods, single photon detection offers 3-km CO2 and aerosol backscattering signals; coherent detection offers a 360-m shorter blind zone and wind field. This DIAL can achieve monitoring of CO2 flux and sudden emissions, which can effectively compensate for the shortages of in-situ sensors and spaceborne systems.

19.
Adv Sci (Weinh) ; : e2310131, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38922788

ABSTRACT

N4-acetylcytidine (ac4C) is essential for the development and migration of tumor cells. According to earlier research, N-acetyltransferase 10 (NAT10) can increase messenger RNAs (mRNAs) stability by catalyzing the synthesis of ac4C. However, little is known about NAT10 expression and its role in the acetylation modifications in prostate cancer (PCa). Thus, the biological function of NAT10 in PCa is investigated in this study. Compared to paraneoplastic tissues, the expression of NAT10 is significantly higher in PCa. The NAT10 expression is strongly correlated with the pathological grade, clinical stage, Gleason score, T-stage, and N-stage of PCa. NAT10 has the ability to advance the cell cycle and the epithelial-mesenchymal transition (EMT), both of which raise the malignancy of tumor cells. Mechanistically, NAT10 enhance the stability of high mobility group AT-hook 1 (HMGA1) by acetylating its mRNA, thereby promoting cell cycle progression to improve cell proliferation. In addition, NAT10 improve the stability of Keratin 8 (KRT8) by acetylating its mRNA, which promotes the progression of EMT to improve cell migration. This findings provide a potential prognostic or therapeutic target for PCa.

20.
J Phys Chem Lett ; 15(25): 6668-6675, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38899781

ABSTRACT

The interfacial adsorption structure of an organic leveler decides its functionality in Cu interconnect electroplating and is yet far from clear. In this work, in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) and electrochemical quartz crystal microbalance (EQCM) in conjunction with density functional theory (DFT) calculations are applied to unravel the interfacial adsorption of the classic dye leveler Janus Green B (JGB) at a Cu electrode and understand its polarization property against Cu electrodeposition from an adsorption structure perspective. ATR-SEIRAS measurements and DFT calculations reveal that the N=N bond of the JGB molecule splits via reductive hydrogenation, forming two fragments of contrasting adsorption configurations. JGB exhibits the strongest inhibition effect on Cu deposition among all the tested additives including individual and mixed fragments, due to the highest coverage of organic adsorbates from JGB dissociation, as measured by EQCM. This work highlights the advantage of surface sensitive analytical tools in understanding the structure-performance of levelers.

SELECTION OF CITATIONS
SEARCH DETAIL
...