Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cell Mol Bioeng ; 2(3): 386-394, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-20703332

ABSTRACT

This study examines how variations in the duty cycle (the duration of applied loading) of deformational loading can influence the mechanical properties of tissue engineered cartilage constructs over one month in bioreactor culture. Dynamic loading was carried out with three different duty cycles: 1 h on/1 h off for a total of 3 h loading/day, 3 h continuous loading, or 6 h of continuous loading per day, with all loading performed 5 days/week. All loaded groups showed significant increases in Young's modulus after one month (vs. free swelling controls), but only loading for a continuous 3 and 6 h showed significant increases in dynamic modulus by this time point. Histological analysis showed that dynamic loading can increase cartilage oligomeric matrix protein (COMP) and collagen types II and IX, as well as prevent the formation of a fibrous capsule around the construct. Type II and IX collagen deposition increased with increased with duration of applied loading. These results point to the efficacy of dynamic deformational loading in the mechanical preconditioning of engineered articular cartilage constructs. Furthermore, these results highlight the ability to dictate mechanical properties with variations in mechanical input parameters, and the possible importance of other cartilage matrix molecules, such as COMP, in establishing the functional material properties of engineered constructs.

2.
J Biomech ; 39(8): 1489-97, 2006.
Article in English | MEDLINE | ID: mdl-15990101

ABSTRACT

Dynamic deformational loading has been shown to significantly increase the development of material properties of chondrocyte-seeded agarose hydrogels, however little is known about the spatial development of the material properties within these constructs. In this study, a technique that combines video microscopy and optimized digital image correlation, was applied to assess the spatial development of material properties in tissue-engineered cartilage constructs cultured in free-swelling and dynamically-loaded conditions (3h/day, 5 days/week, and maintained in free-swelling conditions when not being loaded) over a 6-week period. Although homogeneous at day 0, both free-swelling and dynamically loaded samples progressively developed stiffer outer edges and a softer central region. The distribution of GAGs and collagens were shown to mimic this profile. These results indicate that although dynamic loading augments the development of bulk properties in these samples, possibly by overcoming some of the diffusion limitation and nutrient transport issues, the overall profile of construct properties in the axial direction remains qualitatively the same as in free-swelling culture conditions. Poisson's ratio of these constructs increased over time in culture with increased fixed charged density contributed by the GAGs, but this increase was significantly less in dynamically loaded samples by day 42. Polarized light microscopy of Picrosirius Red labeled samples, at an angle perpendicular to the direction of loading, suggests that these differences in Poisson's ratio may be due to improved organization of collagen network in the dynamically loaded samples.


Subject(s)
Chondrocytes/metabolism , Collagen/biosynthesis , Sepharose , Animals , Cattle , Cell Culture Techniques , Cells, Cultured , Chondrocytes/cytology , Compressive Strength , Mechanotransduction, Cellular , Stress, Mechanical , Time Factors , Tissue Engineering , Weight-Bearing
3.
J Orthop Res ; 23(1): 134-41, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15607885

ABSTRACT

Inspired by the depth-dependent inhomogeneity of articular cartilage, it was hypothesized that a novel layered agarose technique, using a 2% (wt/vol) top and a 3% (wt/vol) bottom layer, would create an inhomogenous tissue construct with distinct material properties in conjoined regions. The biochemical and mechanical development of these constructs was observed alongside uniform 2% and 3% constructs. Initially, uniform 3% agarose disks had the highest bulk Young's modulus (E(Y) approximately 28 kPa) of all groups. After 28 days of culture in 20% FBS-containing media, however, uniform 2% chondrocyte-seeded constructs achieved the highest Young's modulus compared to bilayered and 3% agarose disks. Though all three groups contained similar GAG content ( approximately 1.5% ww), uniform 2% agarose disks on day 28 possessed the highest collagen content ( approximately 1% ww). Unlike in either homogeneous construct type, microscopic analysis of axial strain fields in bilayered constructs in response to applied static compression revealed two mechanically disparate regions on day 0: a softer 2% layer and a stiffer 3% layer. With time in culture, this inhomogeneity became less distinct, as indicated by increased continuity in both the local displacement field and local E(Y), and depended on the level of FBS supplementation of the feed media, with lower FBS concentrations (10%) more closely maintaining the original distinction of material properties. These results shed positive light on a layered agarose technique for the production of inhomogeneous bilayered chondrocyte-seeded agarose constructs with applications for investigations of chondrocyte mechanotransduction and for possible use in the tissue engineering of inhomogeneous articular cartilage constructs.


Subject(s)
Cartilage, Articular/physiology , Chondrocytes/cytology , Tissue Engineering/methods , Animals , Cattle , Collagen/analysis , DNA/analysis , Glycosaminoglycans/analysis , Microscopy, Atomic Force , Sepharose
4.
Biorheology ; 41(3-4): 223-37, 2004.
Article in English | MEDLINE | ID: mdl-15299255

ABSTRACT

Chondrocytes embedded in agarose and subjected to dynamic deformational loading produce a functional matrix with time in culture, but there is usually a delay in the development of significant differences compared to free swelling. In this study, we hypothesized that the initial presence of a cell-associated matrix would expedite construct development in response to dynamic deformational loading. Seeded samples with enzymatically isolated chondrocytes and chondrons (the chondrocyte and its pericellular matrix) and examined the effects of seeding density and dynamic loading on the development of tissue properties. At 60 million/ml, dynamic loading significantly augmented the development of material properties in chondrocyte- and chondron-seeded constructs. Biochemical content and histological analysis indicated that the deposition of GAG, link protein and collagens are affected by the pre-existing cell-associated matrix of the chondron-seeded samples. The pericellular matrix associated with the chondrons did not expedite the development of material properties in response to deformational loading, disproving our hypothesis. The relative concentration and distribution of matrix proteins may play a major role in the disparate responses observed for the chondrocyte- and chondron-seeded cultures. In further support of these findings, culturing chondrocytes in agarose for two weeks prior to the application of deformational loading also did not exhibit expedited construct development.


Subject(s)
Chondrocytes/physiology , Extracellular Matrix/physiology , Adaptation, Physiological , Animals , Cattle , Cell Count , Cells, Cultured , Chondrocytes/chemistry , Collagen/analysis , Gels , Rheology/methods , Stress, Mechanical
5.
J Biomech ; 37(8): 1251-61, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15212931

ABSTRACT

Articular cartilage exhibits complex mechanical properties such as anisotropy, inhomogeneity and tension-compression nonlinearity. This study proposes and demonstrates that the application of compressive loading in the presence of osmotic swelling can be used to acquire a spectrum of incremental cartilage moduli (EYi) and Poisson's ratios (upsilon ij) from tension to compression. Furthermore, the anisotropy of the tissue can be characterized in both tension and compression by conducting these experiments along three mutually perpendicular loading directions: parallel to split-line (1-direction), perpendicular to split-line (2-direction) and along the depth direction (3-direction, perpendicular to articular surface), accounting for tissue inhomogeneity between the surface and deep layers in the latter direction. Tensile moduli were found to be strain-dependent while compressive moduli were nearly constant. The peak tensile (+) Young's moduli in 0.15M NaCl were E+Y1=3.1+/-2.3, E+Y2=1.3+/-0.3, E+Y3(Surface)=0.65+/-0.29 and E+Y3(Deep)=2.1+/-1.2 MPa. The corresponding compressive (-) Young's moduli were E-Y1=0.23+/-0.07, E-Y2=0.22+/-0.07, E-Y3(Surface)=0.18+/-0.07 and E-Y3(Deep)=0.35+/-0.11 MPa. Peak tensile Poisson's ratios were upsilon+12=0.22+/-0.06, upsilon+21=0.13+/-0.07, upsilon+31(Surface)=0.10+/-0.03 and upsilon+31(Deep)=0.20+/-0.05 while compressive Poisson's ratios were upsilon-12=0.027+/-0.012, upsilon-21=0.017+/-0.07, upsilon-31(Surface)=0.034+/-0.009 and upsilon-31(Deep)=0.065+/-0.024. Similar measurements were also performed at 0.015 M and 2 M NaCl, showing strong variations with ionic strength. Results indicate that (a) a smooth transition occurs in the stress-strain and modulus-strain responses between the tensile and compressive regimes, and (b) cartilage exhibits orthotropic symmetry within the framework of tension-compression nonlinearity. The strain-softening behavior of cartilage (the initial decrease in EYi with increasing compressive strain) can be interpreted in the context of osmotic swelling and tension-compression nonlinearity.


Subject(s)
Cartilage, Articular/physiology , Models, Biological , Weight-Bearing/physiology , Animals , Anisotropy , Biomechanical Phenomena/methods , Cartilage, Articular/physiopathology , Cattle , Compressive Strength , Hypertonic Solutions , Hypotonic Solutions , In Vitro Techniques , Isotonic Solutions , Osmotic Pressure , Poisson Distribution , Tensile Strength
6.
Ann Biomed Eng ; 32(1): 35-49, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14964720

ABSTRACT

Deformational loading represents a primary component of the chondrocyte physical environment in vivo. This review summarizes our experience with physiologic deformational loading of chondrocyte-seeded agarose hydrogels to promote development of cartilage constructs having mechanical properties matching that of the parent calf tissue, which has a Young's modulus E(Y) = 277 kPa and unconfined dynamic modulus at 1 Hz G* = 7 MPa. Over an 8-week culture period, cartilage-like properties have been achieved for 60 x 10(6) cells/ml seeding density agarose constructs, with E(Y) = 186 kPa, G* = 1.64 MPa. For these constructs, the GAG content reached 1.74% ww and collagen content 2.64% ww compared to 2.4% ww and 21.5% ww for the parent tissue, respectively. Issues regarding the deformational loading protocol, cell-seeding density, nutrient supply, growth factor addition, and construct mechanical characterization are discussed. In anticipation of cartilage repair studies, we also describe early efforts to engineer cylindrical and anatomically shaped bilayered constructs of agarose hydrogel and bone (i.e., osteochondral constructs). The presence of a bony substrate may facilitate integration upon implantation. These efforts will provide an underlying framework from which a functional tissue-engineering approach, as described by Butler and coworkers (2000), may be applied to general cell-scaffold systems adopted for cartilage tissue engineering.


Subject(s)
Bioreactors , Cartilage, Articular/cytology , Cartilage, Articular/growth & development , Chondrocytes/cytology , Chondrocytes/physiology , Culture Techniques/methods , Tissue Engineering/methods , Weight-Bearing/physiology , Algorithms , Animals , Cattle , Cell Division/physiology , Cells, Cultured , Elasticity , Prostheses and Implants , Stress, Mechanical
7.
J Biomech ; 36(3): 339-53, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12594982

ABSTRACT

The precise nature of the material symmetry of articular cartilage in compression remains to be elucidated. The primary objective of this study was to determine the equilibrium compressive Young's moduli and Poisson's ratios of bovine cartilage along multiple directions (parallel and perpendicular to the split line direction, and normal to the articular surface) by loading small cubic specimens (0.9 x 0.9 x 0.8 mm, n =15) in unconfined compression, with the expectation that the material symmetry of cartilage could be determined more accurately with the help of a more complete set of material properties. The second objective was to investigate how the tension-compression nonlinearity of cartilage might alter the interpretation of material symmetry. Optimized digital image correlation was used to accurately determine the resultant strain fields within the specimens under loading. Experimental results demonstrated that neither the Young's moduli nor the Poisson's ratios exhibit the same values when measured along the three loading directions. The main findings of this study are that the framework of linear orthotropic elasticity (as well as higher symmetries of linear elasticity) is not suitable to describe the equilibrium response of articular cartilage nor characterize its material symmetry; a framework which accounts for the distinctly different responses of cartilage in tension and compression is more suitable for describing the equilibrium response of cartilage; within this framework, cartilage exhibits no lower than orthotropic symmetry.


Subject(s)
Anisotropy , Cartilage, Articular/cytology , Cartilage, Articular/physiology , Models, Biological , Weight-Bearing/physiology , Animals , Cattle , Compressive Strength , Elasticity , Image Enhancement/methods , In Vitro Techniques , Microscopy/methods , Reproducibility of Results , Sensitivity and Specificity , Shoulder/physiology , Stress, Mechanical
8.
Stapp Car Crash J ; 47: 93-105, 2003 Oct.
Article in English | MEDLINE | ID: mdl-17096246

ABSTRACT

Traumatic brain injury (TBI) is caused by brain deformations resulting in the pathophysiological activation of cellular cascades which produce delayed cell damage and death. Understanding the consequences of mechanical injuries on living brain tissue continues to be a significant challenge. We have developed a reproducible tissue culture model of TBI which employs organotypic brain slice cultures to study the relationship between mechanical stimuli and the resultant biological response of living brain tissue. The device allows for the independent control of tissue strain (up to 100%) and strain rate (up to 150 s-1) so that tolerance criteria at the tissue level can be developed for the interpretation of computational simulations. The application of texture correlation image analysis algorithms to high speed video of the dynamic deformation allows for the direct calculation of substrate strain and strain rate which was found to be equi-biaxial and independent of radial position. Precisely controlled, mechanical injuries were applied to organotypic hippocampal slice cultures, and resultant cell death was quantified. Cell death was found to be dependent on both strain magnitude and rate and required several days to develop. An immunohistological examination of injured cultures with antibodies to amyloid precursor protein revealed the presence of traumatic axonal injury, suggesting that the model closely replicates in vivo TBI but with advantages gained in vitro. We anticipate that a combined in vitro approach with optical strain mapping will provide a more detailed understanding of the dependence of brain cell injury and death on strain and strain rate.

9.
J Biomech Eng ; 124(5): 557-67, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12405599

ABSTRACT

An automated approachfor measuring in situ two-dimensional strain fields was developed and validated for its application to cartilage mechanics. This approach combines video microscopy, optimized digital image correlation (DIC), thin-plate spline smoothing (TPSS) and generalized cross-validation (GCV) techniques to achieve the desired efficiency and accuracy. Results demonstrate that sub-pixel accuracies can be achieved for measuring tissue displacements with this methodology with a measurement uncertainty ranging from 0.25 to 0.30 pixels. The deformational gradients (from which the strains are determined) can be evaluated directly using the optimized DIC, with a measurement uncertainty of 0.017 to approximately 0.032. In actual measurements of strain in cartilage, TPSS and differentiation can be used to achieve a more accurate measurement of the gradients from the displacement data. Using this automated approach, the two-dimensional strain fields inside immature bovine carpometacarpal joint cartilage specimens under unconfined compression were characterized (n=21). The depth-dependent apparent elastic modulus and Poisson's ratio were also determined and found to be smallest at the articular surface and increasing with depth. The apparent Poisson's ratio is found to decrease with increasing compressive strain, with values as low as 0.01 observed near the articular surface at 25% compression. The variation of the apparent Poisson's ratio with depth is found to be consistent with a theoretical model of cartilage which accounts for the disparity in its tensile and compressive moduli.


Subject(s)
Cartilage, Articular/cytology , Cartilage, Articular/physiology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Microscopy, Video/methods , Weight-Bearing/physiology , Animals , Elasticity , In Vitro Techniques , Quality Control , Reproducibility of Results , Sensitivity and Specificity , Signal Processing, Computer-Assisted , Stress, Mechanical , Wrist Joint/physiology
10.
Biorheology ; 39(1-2): 11-25, 2002.
Article in English | MEDLINE | ID: mdl-12082263

ABSTRACT

A non-invasive methodology (based on video microscopy, optimized digital image correlation and thin plate spline smoothing technique) has been developed to determine the intrinsic tissue stiffness (H(a)) and the intrinsic fixed charge density (c(0)(F)) distribution for hydrated soft tissues such as articular cartilage. Using this technique, the depth-dependent inhomogeneous parameters H(a)(z) and c(0)(F)(z) were determined for young bovine cartilage and incorporated into a triphasic mixture model. This model was then used to predict the mechanical and electrochemical events (stress, strain, fluid/osmotic pressure, and electrical potentials) inside the tissue specimen under a confined compression stress relaxation test. The integration of experimental measurements with theoretical analyses can help to understand the unique material behaviors of articular cartilage. Coupled with biological assays of cell-scale biosynthesis, there is also a great potential in the future to study chondrocyte mechanotransduction in situ with a new level of specificity.


Subject(s)
Cartilage, Articular/physiology , Chondrocytes/physiology , Animals , Cattle , Compressive Strength , In Vitro Techniques , Models, Biological , Osmosis , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...