Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Invest ; 101(10): 1363-1370, 2021 10.
Article in English | MEDLINE | ID: mdl-34234270

ABSTRACT

The wound-healing process is a natural response to burn injury. Resveratrol (RES) may have potential as a therapy for wound healing, but how and whether RES regulates skin repair remains poorly understood. Human epidermal keratinocyte (HaCaT) cells were treated with lipopolysaccharide (LPS), and a mouse skin wound-healing model was established. Cell viability and apoptosis were analyzed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide or flow cytometry. Cell proliferation was assessed by cell viability and colony-formation analyses. Cell migration was tested by wound-healing analysis. The microRNA-212 (miR-212) and caspase-8 (CASP8) levels were determined by quantitative reverse transcription polymerase chain reaction and western blotting. The correlation between miR-212 and CASP8 was analyzed by dual-luciferase reporter analysis. Skin wound healing in mice was assessed by measuring the wound area and gap after hematoxylin-eosin (HE) staining. RES reduced the LPS-induced reduction in viability and apoptosis in HaCaT cells. miR-212 expression was reduced by LPS and increased by exposure to RES. RES promoted cell proliferation and migration after LPS treatment by increasing miR-212 levels. CASP8 was a target of miR-212. CASP8 silencing promoted cell proliferation and migration, which was reversed by miR-212 knockdown in LPS-treated HaCaT cells. RES promoted skin wound healing in mice, which was reduced by miR-212 knockdown. Thus, RES facilitates cell proliferation and migration in LPS-treated HaCaT cells and promotes skin wound-healing in a mouse model by regulating the miR-212/CASP8 axis.


Subject(s)
Caspase 8/metabolism , MicroRNAs/metabolism , Resveratrol/pharmacology , Wound Healing/drug effects , Animals , Cell Line, Transformed , Cell Proliferation/drug effects , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Male , Mice , Mice, Inbred C57BL
2.
Chin J Integr Med ; 25(3): 203-209, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30552545

ABSTRACT

OBJECTIVE: To investigate the effects of Ganoderma lucidum polysaccharides (GL-PS) on human fibroblasts and skin wound healing in Kunming male mice and to explore the putative molecular mechanism. METHODS: Primary human skin fibroblasts were cultured. The viability of fibroblasts treated with 0, 10, 20, 40, 80, and 160 µg/mL of GL-PS, respectively were detected by 3-4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2-Htetrazolium bromide (MTT). The migration ability of fibroblasts treated with 0, 10, 20, and 40 µg/mL of GL-PS were measured by transwell assay. The secretion of the C-terminal peptide of procollagen type I (CICP) and transforming growth factor-ß1 (TGF-ß1) in the cell supernatant was tested by enzyme-linked immunosorbent assay. The expression of ß-catenin was detected by Western blot. Furthermore, the Kunming mouse model with full-layer skin resection trauma was established, and was treated with 10, 20, and 40 mg/mL of GL-PS, respectively as external use. The size of the wound was measured daily, complete healing time in each group was recorded and the percentage of wound contraction was calculated. RESULTS: Compared with the control group, 10, 20, and 40 µg/mL of GL-PS significantly increased the viability of fibroblasts, promoted the migration ability of fibroblasts, and up-regulated the expressions of CICP and TGF-ß1 in fibroblasts (Plt;0.05 or Plt;0.01). The expression of ß-catenin in fibroblasts treated with 20 and 40 µg/mL of GL-PS was significantly higher than that of the control group (Plt;0.01). Furthermore, after external use of 10, 20, and 40 mg/mL of GL-PS, the rates of wound healing in mice were significantly higher and the wound healing time was significantly less than the control group (Plt;0.05 or Plt;0.01). CONCLUSION: A certain concentration of GL-PS may promote wound healing via activation of the Wnt/ß-catenin signaling pathway and up-regulation of TGF-ß1, which might serve as a promising source of skin wound healing.


Subject(s)
Polysaccharides/pharmacology , Reishi/chemistry , Skin/drug effects , Wound Healing/drug effects , Animals , Cell Movement/drug effects , Cell Survival/drug effects , Cells, Cultured , Collagen Type I/biosynthesis , Fibroblasts/drug effects , Humans , Male , Mice , Skin/injuries , Transforming Growth Factor beta1/physiology , beta Catenin/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...