Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.134
Filter
1.
Phys Med ; : 103392, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38862325

ABSTRACT

The International Commission on Radiological Protection (ICRP), recently expressed concern that "a shortage of investment in training, education, research, and infrastructure seen in many sectors and countries may compromise society's ability to properly manage radiation risks" and in 2022 announced the "Vancouver call for action to strengthen expertise in radiological protection worldwide". As representatives of organisations in formal relations with ICRP, we decided to promote this position paper to declare and emphasise that strengthening the expertise in radiological protection is a collective priority for all of us.

2.
Article in English | MEDLINE | ID: mdl-38864709

ABSTRACT

Dysregulation of α cells results in hyperglycemia and hyperglucagonemia in type 2 diabetes mellitus (T2DM). Mesenchymal stromal cell (MSC)-based therapy increases oxygen consumption of islets and enhances insulin secretion. However, the underlying mechanism for the protective role of MSCs in α-cell mitochondrial dysfunction remains unclear. Here, human umbilical cord MSCs (hucMSCs) were used to treat 2 kinds of T2DM mice and αTC1-6 cells to explore the role of hucMSCs in improving α-cell mitochondrial dysfunction and hyperglucagonemia. Plasma and supernatant glucagon were detected by enzyme-linked immunosorbent assay (ELISA). Mitochondrial function of α cells was assessed by the Seahorse Analyzer. To investigate the underlying mechanisms, Sirtuin 1 (SIRT1), Forkhead box O3a (FoxO3a), glucose transporter type1 (GLUT1), and glucokinase (GCK) were assessed by Western blotting analysis. In vivo, hucMSC infusion improved glucose and insulin tolerance, as well as hyperglycemia and hyperglucagonemia in T2DM mice. Meanwhile, hucMSC intervention rescued the islet structure and decreased α- to ß-cell ratio. Glucagon secretion from αTC1-6 cells was consistently inhibited by hucMSCs in vitro. Meanwhile, hucMSC treatment activated intracellular SIRT1/FoxO3a signaling, promoted glucose uptake and activation, alleviated mitochondrial dysfunction, and enhanced ATP production. However, transfection of SIRT1 small interfering RNA (siRNA) or the application of SIRT1 inhibitor EX-527 weakened the therapeutic effects of hucMSCs on mitochondrial function and glucagon secretion. Our observations indicate that hucMSCs mitigate mitochondrial dysfunction and glucagon hypersecretion of α cells in T2DM via SIRT1/FoxO3a signaling, which provides novel evidence demonstrating the potential for hucMSCs in treating T2DM.

3.
BMC Plant Biol ; 24(1): 544, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872112

ABSTRACT

BACKGROUND: Plant height (PH) is an important agronomic trait influenced by a complex genetic network. However, the genetic basis for the variation in PH in Medicago sativa remains largely unknown. In this study, a comprehensive genome-wide association analysis was performed to identify genomic regions associated with PH using a diverse panel of 220 accessions of M. sativa worldwide. RESULTS: Our study identified eight novel single nucleotide polymorphisms (SNPs) significantly associated with PH evaluated in five environments, explaining 8.59-12.27% of the phenotypic variance. Among these SNPs, the favorable genotype of chr6__31716285 had a low frequency of 16.4%. Msa0882400, located proximal to this SNP, was annotated as phosphate transporter 3;1, and its role in regulating alfalfa PH was supported by transcriptome and candidate gene association analysis. In addition, 21 candidate genes were annotated within the associated regions that are involved in various biological processes related to plant growth and development. CONCLUSIONS: Our findings provide new molecular markers for marker-assisted selection in M. sativa breeding programs. Furthermore, this study enhances our understanding of the underlying genetic and molecular mechanisms governing PH variations in M. sativa.


Subject(s)
Genome-Wide Association Study , Medicago sativa , Polymorphism, Single Nucleotide , Medicago sativa/genetics , Phenotype , Genes, Plant , Quantitative Trait Loci/genetics , Genotype
4.
Phys Chem Chem Phys ; 26(24): 17359-17369, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38860664

ABSTRACT

Boron-doped graphdiyne (B-GDY) material exhibits an excellent performance in electrocatalysis, ion transport, and energy storage. However, accurately identifying the structures of B-GDY in experiments remains a challenge, hindering further selection of suitable structures with the most ideal performance for various practical applications. In the present work, we employed density functional theory (DFT) to simulate the X-ray photoelectron spectra (XPS) and near-edge X-ray absorption fine-structure (NEXAFS) spectra of pristine graphdiyne (GDY) and six representative single boron-doped graphdiynes at the B and C K-edges to establish the structure-spectroscopy relationship. A notable disparity in the C 1s ionization potentials (IPs) between substituted and adsorbed structures is observed upon doping with a boron atom. By analyzing the C and B 1s NEXAFS spectra on energy positions, spectral widths, spectral intensities, and different spectral profiles, we found that the six single boron-doped graphdiyne configurations can be sensitively identified. Moreover, this study provides a reliable theoretical reference for distinguishing different single boron-doped graphdiyne structures, enabling accurate selection of B-GDY structures for diverse practical applications.

5.
Sci Rep ; 14(1): 13882, 2024 06 16.
Article in English | MEDLINE | ID: mdl-38880800

ABSTRACT

The triglyceride glucose-body mass index (TyG-BMI) is a convenient and clinically significant indicator of insulin resistance. This study aims to investigate the correlation between TyG-BMI and the onset of new-onset diabetes and determine an optimal reflection point for TyG-BMI. An analysis was conducted on 1917 participants from the risk evaluation of cancers in Chinese diabetic individuals: a lONgitudinal (REACTION) study. Participants were categorized based on their TyG-BMI, and the relationship between TyG-BMI and the incidence of new-onset diabetes was explored through logistic regression models, smoothed curve fitting with restricted cubic spline, and a two-piecewise logistic regression model. The mean age of the participants was 57.60 ± 8.89 years, with 66.5% being females. The mean TyG-BMI was 223.3 ± 32.8. Ultimately, 137 individuals (7.1%) progressed to diabetes after three years. After adjusting for covariates, TyG-BMI exhibited a positive correlation with new-onset diabetes (odd ratios (OR) for each standard deviation increase = 1.330, 95% CI 1.110-1.595). The relationship between TyG-BMI and new-onset diabetes was non-linear, with a inflcetion point at 202.9. This study reveals a positive non-linear relationship between TyG-BMI and the risk of new-onset diabetes in Chinese middle-aged and elderly individuals. When TyG-BMI exceeds 202.9, there is a significantly heightened risk of new-onset diabetes. These findings offer valuable insights for preventing new-onset diabetes.


Subject(s)
Blood Glucose , Body Mass Index , Triglycerides , Humans , Female , Middle Aged , Male , Triglycerides/blood , Blood Glucose/analysis , Blood Glucose/metabolism , Aged , Longitudinal Studies , Risk Factors , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/epidemiology , China/epidemiology , Incidence , Insulin Resistance , Diabetes Mellitus/blood , Diabetes Mellitus/epidemiology
6.
iScience ; 27(6): 109796, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38832016

ABSTRACT

Metabolic diseases such as obesity and diabetes induce lipotoxic cardiomyopathy, which is characterized by myocardial lipid accumulation, dysfunction, hypertrophy, fibrosis and mitochondrial dysfunction. Here, we identify that mitochondrial glycerol 3-phosphate dehydrogenase (mGPDH) is a pivotal regulator of cardiac fatty acid metabolism and function in the setting of lipotoxic cardiomyopathy. Cardiomyocyte-specific deletion of mGPDH promotes high-fat diet induced cardiac dysfunction, pathological hypertrophy, myocardial fibrosis, and lipid accumulation. Mechanically, mGPDH deficiency inhibits the expression of desuccinylase SIRT5, and in turn, the hypersuccinylates majority of enzymes in the fatty acid oxidation (FAO) cycle and promotes the degradation of these enzymes. Moreover, manipulating SIRT5 abolishes the effects of mGPDH ablation or overexpression on cardiac function. Finally, restoration of mGPDH improves lipid accumulation and cardiomyopathy in both diet-induced and genetic obese mouse models. Thus, our study indicates that targeting mGPDH could be a promising strategy for lipotoxic cardiomyopathy in the context of obesity and diabetes.

7.
Am J Vet Res ; : 1-13, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38889741

ABSTRACT

OBJECTIVE: Porcine interferon-γ (poIFN-γ) and porcine granulocyte-macrophage colony-stimulating factor (poGM-CSF) are multifunctional cytokines that exhibit robust antiviral activity against porcine reproductive and respiratory syndrome virus (PRRSV). In this study, the immunoadjuvant effects of recombinant poIFN-γ-poGM-CSF fusion protein in inactivated PRRSV vaccine administered to piglets were assessed. ANIMALS: Twenty-eight 4-week-old specific pathogen-free piglets. METHODS: The experimental piglets were divided into control, highly pathologic PRRSV, PRRSV killed virus vaccine (KV), poIFN-γ-poGM-CSF, KV + 1.0 mg poIFN-γ-poGM-CSF, KV + 2.0 mg poIFN-γ-poGM-CSF, and KV + 4.0 mg poIFN-γ-poGM-CSF groups. A recombinant poIFN-γ-linker-poGM-CSF fusion gene was constructed via splicing by overlap extension PCR and prepared using an Escherichia coli expression system, after which its adjuvant activity in the context of PRRSV KV administration was assessed. RESULTS: This analysis revealed the successful construction of the poIFN-γ-linker-poGM-CSF fusion gene via splicing by overlap extension PCR, with recombinant poIFN-γ-linker-poGM-CSF successfully being prepared in E coli with a plasmid vector for expressing thioredoxin fusion proteins with an enterokinase site. Importantly, the coadministration of poIFN-γ-linker-poGM-CSF and PRRSV KV significantly increased neutralizing antibody titers, accelerated viral clearance, reduced clinical symptoms, and prevented highly pathogenic PRRSV infection. CLINICAL RELEVANCE: The recombinant poIFN-γ-poGM-CSF fusion protein is a promising candidate adjuvant for use in the context of swine immunization and viral challenge.

8.
Ann Plast Surg ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38896854

ABSTRACT

ABSTRACT: Rhinophyma leads to severe facial deformities and significant social pressure for patients. Patients often seek medical intervention due to cosmetic defects and functional impairments, such as nasal congestion and airway collapse. Currently, there are numerous treatment modalities for rhinophyma, each with distinct advantages and disadvantages, leading to a lack of consensus in nasal vegetation management. Severe thickening in the nasal area can obstruct breathing through external nasal valve blockage, necessitating appropriate management for relief. This article presents a case study involving severe rhinophyma with respiratory obstruction that was successfully treated using incomplete resection followed by reconstruction to restore normal nasal contour. This not only achieved an upright position for nasal columella but also improved nasal contour to achieve normal appearance levels while completely relieving respiratory tract obstruction and enhancing patients' ventilation function. This method is easily performed without requiring additional expensive equipment, making it economically feasible even in ordinary medical centers while enabling patients to achieve a high quality of life.

9.
Nutrients ; 16(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38892694

ABSTRACT

Certain workplaces, like deep-sea voyages, subject workers to chronic psychological stress and circadian rhythm disorders due to confined environments and frequent shifts. In this study, participants lived in a strictly controlled confined environment, and we analyzed the effects of a confined environment on gut microbiota and metabolites. The results showed that living in confined environments can significantly alter both the gut microbiota and the gut metabolome, particularly affecting lipid metabolism pathways like glycerophospholipid metabolism. There was a significant reduction in the abundance of Faecalibacterium and Bacteroides, while Blautia, Bifidobacterium, and Collinsella showed significant increases. An association analysis revealed a strong correlation between changes in the gut microbiota and the metabolome. Four upregulated lipid metabolites may serve as biomarkers for damage induced by confined environments, and certain gut microbiota alterations, such as those involving Faecalibacterium and Bacteroides, could be potential psychobiotics or therapeutic targets for enhancing mental health in a confined environment.


Subject(s)
Gastrointestinal Microbiome , Metabolome , Humans , Gastrointestinal Microbiome/physiology , Male , Adult , Lipid Metabolism , Bacteroides/metabolism , Female , Stress, Psychological/microbiology , Stress, Psychological/metabolism , Feces/microbiology , Bacteria/metabolism , Bacteria/classification
10.
Chem Commun (Camb) ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896453

ABSTRACT

An intermolecular hydrogen bond between 2,5-dihydroxyterephthalic acid and the anions in the Li+ solvation shell is constructed to promote the formation of a LiF-rich SEI on a metallic Li electrode. Li metal batteries with improved cyclability (140 cycles under an N/P ratio of 4.9) and high capacity retention (90%) are eventually obtained.

11.
Sci Total Environ ; 945: 173508, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38851353

ABSTRACT

Streams are disproportionately significant contributors to increases in greenhouse gas (GHG) effluxes in river networks. In the context of global urbanization, a growing number of streams are affected by urbanization, which has been suggested to stimulate the water-air GHG emissions from fluvial systems. This study investigated the seasonal and longitudinal profiles of GHG (N2O, CH4, and CO2) concentrations of Jiuxianghe Stream, a headwater stream undergoing urbanization, and estimated its GHG diffusive fluxes and global warming potentials (GWPs) using the boundary layer method. The results showed that N2O, CH4, and CO2 concentrations in Jiuxianghe Stream were 0.45-7.19 µg L-1, 0.31-586.85 µg L-1, and 0.16-11.60 mg L-1, respectively. N2O, CH4, and CO2 concentrations in the stream showed 4.55-, 23.70-, and 7.68-fold increases from headwaters to downstream, respectively, corresponding to the forest-urban transition within the watershed. Multiple linear regression indicated that NO3--N, NH4+-N, and DOC:NO3--N accurately predicted N2O and CO2 concentrations, indicating that N nutrients were the driving factors. The Jiuxianghe Stream was a source of atmospheric GHGs with a daily GWP of 7.31 g CO2-eq m-2 d-1 on average and was significantly positively correlated with the ratio of construction land and forest in the sub-watershed. This study highlights the critical role of urbanization in amplifying GHG emissions from streams, thereby augmenting our understanding of GHG emissions from river networks. With global urbanization on the rise, streams experiencing urbanization are expected to make an unprecedentedly significant contribution to riverine GHG budgets in the future.

12.
Theranostics ; 14(8): 3082-3103, 2024.
Article in English | MEDLINE | ID: mdl-38855180

ABSTRACT

Background: Gouty arthritis causes severe pain and inflammation. Alginate oligosaccharides (AOSs) are natural products derived from alginate and have anti-inflammatory properties. We explored the potential effects of AOSs with different degrees of polymerization (Dp) on gouty arthritis and associated mechanisms. Methods: We established a mouse model of gouty arthritis by injecting monosodium urate (MSU) into ankle joint. Nocifensive behavior, gait and ankle swelling were used to study AOS's effects. Biochemical assays, in vivo imaging, live cell Ca2+ imaging, electrophysiology, RNA-sequencing, etc. were used for mechanism exploration. Results: AOS2 (Dp=2), AOS3 (Dp=3) and AOS4 (Dp=4) all inhibited ankle swelling, whereas AOS2&3 produced the most obvious analgesia on model mice. AOS3, which was picked for further evaluation, produced dose-dependent ameliorative effects on model mice. AOS3 reversed gait impairments but did not alter locomotor activity. AOS3 inhibited NLRP3 inflammasome activation and inflammatory cytokine up-regulation in ankle joint. AOS3 ameliorated MSU-induced oxidative stress and reactive oxygen species (ROS) production both in vivo and in vitro and reversed the impaired mitochondrial bioenergetics. AOS3 activated the Nrf2 pathway and promoted Nrf2 disassociation from Keap1-bound complex and Nrf2 nuclear translocation, thus facilitating antioxidant gene expression via Nrf2-dependent mechanism. Nrf2 gene deficiency abolished AOS3's ameliorative effects on pain, inflammation and oxidative stress in ankle joints of model mice. AOS3 reduced TRPV1 functional enhancement in DRG neurons and constrained neuroactive peptide release. Conclusions: AOS3 ameliorates gouty arthritis via activating Nrf2-dependent antioxidant signaling, resulting in suppression of ROS-mediated NLRP3 inflammasome activation and TRPV1 enhancement. AOS3 may be novel therapeutics for gouty arthritis.


Subject(s)
Alginates , Arthritis, Gouty , Disease Models, Animal , Inflammation , Oligosaccharides , Animals , Arthritis, Gouty/drug therapy , Arthritis, Gouty/metabolism , Mice , Oligosaccharides/pharmacology , Alginates/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Male , Arthralgia/drug therapy , Arthralgia/metabolism , Uric Acid/metabolism , Mice, Inbred C57BL , Anti-Inflammatory Agents/pharmacology , Inflammasomes/metabolism , Inflammasomes/drug effects , Ankle Joint/pathology , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects
13.
Fitoterapia ; : 106091, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908760

ABSTRACT

Nitric oxide (NO) is an important gas messenger molecule with a wide range of biological functions. High concentration of NO exerts promising antitumor effects and is regarded as one of the hot spots in cancer research, that have limitations in their direct application due to its gaseous state, short half-life (seconds) and high reactivity. Lysyl oxidase (LOX) is a copper-dependent amine oxidase that is responsible for the covalent bonding between collagen and elastin and promotes tumor cell invasion and metastasis. The overexpression of LOX in triple-negative breast cancer (TNBC) makes it an attractive target for TNBC therapy. Herein, novel NO donor prodrug molecules were designed and synthesized based on the naturally derived piperlongumine (PL) skeleton, which can be selectively activated by LOX to release high concentrations of NO and PL derivatives, both of them play a synergistic role in TNBC therapy. Among them, the compound TM-1 selectively released NO in highly invasive TNBC cells (MDA-MB-231), and TM-1 was also confirmed as a potential TNBC cell line inhibitor with an inhibitory concentration of 2.274 µM. Molecular docking results showed that TM-1 had a strong and selective binding affinity with LOX protein.

14.
Clin Immunol ; : 110291, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908771

ABSTRACT

Linear IgA bullous dermatosis (LABD) and dermatitis herpetiformis (DH) represent the major subtypes of IgA mediated autoimmune bullous disorders. We sought to understand the disease etiology by using serum proteomics. We assessed 92 organ damage biomarkers in LAB, DH, and healthy controls using the Olink high-throughput proteomics. The positive proteomic serum biomarkers were used to correlate with clinical features and HLA type. Targeted proteomic analysis of IgA deposition bullous disorders vs. controls showed elevated biomarkers. Further clustering and enrichment analyses identified distinct clusters between LABD and DH, highlighting the involvement of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Comparative analysis revealed biomarkers with distinction between LABD and DH and validated in the skin lesion. Finally, qualitative correlation analysis with DEPs suggested six biomarkers (NBN, NCF2, CAPG, FES, BID, and PXN) have better prognosis in DH patients. These findings provide potential biomarkers to differentiate the disease subtype of IgA deposition bullous disease.

15.
Biol Direct ; 19(1): 42, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831379

ABSTRACT

Triple-negative breast cancer (TNBC) is more aggressive and has a higher metastasis rate compared with other subtypes of breast cancer. Due to the lack of drug-targetable receptors, chemotherapy is now the only available systemic treatment for TNBC. However, some patients might still develop drug resistance and have poor prognosis. Therefore, novel molecular biomarkers and new treatment targets are urgently needed for patients with TNBC. To provide molecular insights into TNBC progression, we investigated the function and the underlying mechanism of Defective in cullin neddylation 1 domain containing 5 (DCUN1D5) in the regulation of TNBC. By TCGA dataset and surgical specimens with immunohistochemical (IHC) staining method, DCUN1D5 was identified to be significantly upregulated in TNBC tumor tissues and negatively associated with prognosis. A series of in vitro and in vivo experiments were performed to confirm the oncogenic role of DCUN1D5 in TNBC. Overexpression of FN1 or PI3K/AKT activator IGF-1 could restore the proliferative and invasive ability induced by DCUN1D5 knockdown and DCUN1D5 could act as a novel transcriptional target of transcription factor Yin Yang 1 (YY1). In conclusion, YY1-enhanced DCUN1D5 expression could promote TNBC progression by FN1/PI3K/AKT pathway and DCUN1D5 might be a potential prognostic biomarker and therapeutic target for TNBC treatment.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Triple Negative Breast Neoplasms , YY1 Transcription Factor , Animals , Female , Humans , Mice , Cell Line, Tumor , Disease Progression , Fibronectins , Gene Expression Regulation, Neoplastic , Mice, Nude , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction , Transcriptional Activation , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , YY1 Transcription Factor/metabolism , YY1 Transcription Factor/genetics
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124500, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38795526

ABSTRACT

The near-infrared (NIR) thermally activated delayed fluorescence (TADF) molecules hold practical application value in various fields, including biological imaging, anti-counterfeiting, sensors, telemedicine, photomicrography, and night vision display. These molecules have emerged as a significant development direction in organic electroluminescent devices, offering exciting possibilities for future technological advancements. Despite the remarkable potential of NIR-TADF molecules in various applications, the development of molecules that exhibit both long-wavelength emission and high efficiency remains a significant challenge. Herein, based on T-type and Y-type TADF molecules BCN-TPA and ECN-TPA, a novel X-type TADF molecule X-ECN-TPA is theoretically designed through a molecular fusion strategy. Utilizing first-principles calculations and the thermal vibration correlation function (TVCF) method, the photophysical properties and luminescent mechanisms of these three molecules in both solvent and solid (doped films) are revealed. A comparison of the luminescent properties of isomeric BCN-TPA and ECN-TPA shows that the enhanced luminescence efficiency of BCN-TPA in the solid states is attributed to higher radiative rates and lower non-radiative rates. Furthermore, compared to BCN-TPA and ECN-TPA, X-ECN-TPA exhibits significant conjugation extension, resulting in a pronounced redshift, reaching 831 nm and 813 nm in solvent and solid states, respectively. Importantly, molecular fusion significantly increases the transition dipole moment density between the donor and acceptor, leading to a substantial increase in radiative transition rates. Additionally, molecular fusion effectively reduces the energy gap between the first singlet excited state (S1) and the first triplet excited state (T1), facilitating the improvement of the reverse intersystem crossing (RISC) process. In addition, the calculation of Marcus formula shows that the triplet energy transfer from CBP to BCN-TPA, ECN-TPA and X-ECN-TPA is very effective. This work not only designs a novel efficient NIR-TADF molecule but also proposes a strategy for designing efficient NIR-TADF molecules. This principle offers unique insights for optimizing traditional molecular frameworks, opening up new possibilities for future advancements.

17.
Am J Biol Anthropol ; 184(3): e24945, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38708925

ABSTRACT

The linguistic, historical, and subsistent uniqueness of Hmong-Mien (HM) speakers offers a wonderful opportunity to investigate how these factors impact the genetic structure. The genetic differentiation among HM speakers and their population history are not well characterized. Here, we generate genome-wide data from 65 Yao ethnicity samples and analyze them with published data, particularly by leveraging haplotype-based methods. We determined that the fine-scale genetic substructure of HM speakers corresponds better with linguistic classification than with geography. Particularly, parallels between serial founder events and language differentiations can be observed in West Hmongic speakers. Multiple lines of evidence indicate that ~500-year-old GaoHuaHua individuals are most closely related to West Hmongic-speaking Bunu. The strong genetic bottleneck of some HM-speaking groups, especially Bunu, could potentially be associated with their long-term practice of swidden agriculture to some degree. The inferred admixture dates for most of the HM speakers overlap with the reign of the Ming dynasty (1368-1644 CE). Besides a common genetic origin for HM speakers, their genetic ancestry is shared primarily with neighboring Han Chinese and Tai-Kadai speakers in south China. In conclusion, our analyses reveal that recent isolation and admixture events have contributed to the genetic population history of present-day HM speakers.


Subject(s)
Language , Humans , China/ethnology , Haplotypes , Asian People/genetics , Ethnicity/genetics , Ethnicity/history , Genetics, Population
18.
Sci Total Environ ; 935: 173274, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38754508

ABSTRACT

As the sole carbonaceous renewable energy source, biomass is distinguished by its abundant yield, widespread distribution, and carbon neutrality. It is integral to the achievement of zero and negative carbon production via conventional carbonaceous pellet technology. This study introduces a cradle-to-gate life cycle assessment methodology for biomass preparation in carbonaceous pellets. We prepare high-quality biochar through a process combining hydrothermal carbonization and pyrolytic carbonization. Biomass high molecular weight extracts are obtained via organic pyrolytic extraction, while biomass high-temperature binders result from the modification and treatment of biochar. Biomass carbonaceous pellets are then formed using hot press technology. The ReCiPe model facilitates a comprehensive life cycle assessment of biomass carbonaceous pellets used in blast furnace production. The study leverages two comprehensive evaluation indicators - renewability, and environmental performance - to enhance the environmental performance of the process system and to maximize energy-saving and emission reduction potential.

19.
Anal Biochem ; 692: 115559, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38723993

ABSTRACT

Bacteremia, as a serious infectious disease, has an increasing incidence and a high mortality rate. Early diagnosis and early treatment are crucial for improving the cure rate. In this work, we proposed an inductively coupled plasma mass spectrometry (ICP-MS)-based detection method combined with gold nanoparticle (Au NP) and silver nanoparticle (Ag NP) labeling for the simultaneous detection of Salmonella and Escherichia coli (E. coli O157:H7) in human blood samples. Salmonella and E. coli O157:H7 were captured by magnetic beads coupled with anti-8G3 and anti-7C2, and then specifically labeled by Au NP-anti-5H12 and Ag NP-anti-8B1 respectively, which were used as signal probes for ICP-MS detection. Under the optimal experimental conditions, the limits of detection of 164 CFU mL-1 for Salmonella, 220 CFU mL-1for E. coli O157:H7 and the linear ranges of 400-80,000 CFU mL-1Salmonella, 400-60,000 CFU mL-1 E. coli O157:H7 were obtained. The proposed method can realize the simultaneous detection of two types of pathogenic bacteria in human whole blood in 3.5 h, showing great potential for the rapid diagnosis of bacteremia in clinic.


Subject(s)
Bacteremia , Gold , Mass Spectrometry , Metal Nanoparticles , Salmonella , Silver , Bacteremia/diagnosis , Bacteremia/microbiology , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Silver/chemistry , Mass Spectrometry/methods , Salmonella/isolation & purification , Escherichia coli O157/isolation & purification , Limit of Detection
20.
Biochem Pharmacol ; 225: 116329, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38821375

ABSTRACT

Calcium signaling abnormality in cardiomyocytes, as a key mechanism, is closely associated with developing heart failure. Fibroblast growth factor 13 (FGF13) demonstrates important regulatory roles in the heart, but its association with cardiac calcium signaling in heart failure remains unknown. This study aimed to investigate the role and mechanism of FGF13 on calcium mishandling in heart failure. Mice underwent transaortic constriction to establish a heart failure model, which showed decreased ejection fraction, fractional shortening, and contractility. FGF13 deficiency alleviated cardiac dysfunction. Heart failure reduces calcium transients in cardiomyocytes, which were alleviated by FGF13 deficiency. Meanwhile, FGF13 deficiency restored decreased Cav1.2 and Serca2α expression and activity in heart failure. Furthermore, FGF13 interacted with microtubules in the heart, and FGF13 deficiency inhibited the increase of microtubule stability during heart failure. Finally, in isoproterenol-stimulated FGF13 knockdown neonatal rat ventricular myocytes (NRVMs), wildtype FGF13 overexpression, but not FGF13 mutant, which lost the binding site of microtubules, promoted calcium transient abnormality aggravation and Cav1.2 downregulation compared with FGF13 knockdown group. Generally, FGF13 deficiency improves abnormal calcium signaling by inhibiting the increased microtubule stability in heart failure, indicating the important role of FGF13 in cardiac calcium homeostasis and providing new avenues for heart failure prevention and treatment.


Subject(s)
Calcium Signaling , Fibroblast Growth Factors , Heart Failure , Microtubules , Myocytes, Cardiac , Animals , Microtubules/metabolism , Microtubules/drug effects , Heart Failure/metabolism , Heart Failure/genetics , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Calcium Signaling/physiology , Mice , Rats , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Male , Mice, Knockout , Mice, Inbred C57BL , Rats, Sprague-Dawley , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...