Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
World J Stem Cells ; 13(7): 877-893, 2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34367482

ABSTRACT

Glioblastoma multiforme (GBM), the most frequently occurring malignant brain tumor in adults, remains mostly untreatable. Because of the heterogeneity of invasive gliomas and drug resistance associated with the tumor microenvironment, the prognosis is poor, and the survival rate of patients is low. Communication between GBMs and non-glioma cells in the tumor microenvironment plays a vital role in tumor growth and recurrence. Emerging data have suggested that neural stem cells (NSCs) in the subventricular zone (SVZ) are the cells-of-origin of gliomas, and SVZ NSC involvement is associated with the progression and recurrence of GBM. This review highlights the interaction between SVZ NSCs and gliomas, summarizes current findings on the crosstalk between gliomas and other non-glioma cells, and describes the links between SVZ NSCs and gliomas. We also discuss the role and mechanism of SVZ NSCs in glioblastoma, as well as the interventions targeting the SVZ and their therapeutic implications in glioblastoma. Taken together, understanding the biological mechanism of glioma-NSC interactions can lead to new therapeutic strategies for GBM.

2.
J Neurotrauma ; 37(1): 43-54, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31397209

ABSTRACT

Microglia are the primary immune cells in the central nervous system and undergo significant morphological and transcriptional changes after traumatic brain injury (TBI). However, their exact contribution to the pathogenesis of TBI is still debated and remains to be elucidated. In the present study, thy-1 GFP mice received a colony-stimulating factor 1 receptor inhibitor (PLX3397) for 21 consecutive days, then were subjected to moderate fluid percussion injury (FPI). Brain samples were collected at 1 day and 3 days after FPI for flow cytometry analysis, immunofluorescence, dendrite spine quantification, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, and Western blot. We found that PLX3397 treatment significantly attenuated the percentages of resident microglia and infiltrated immune cells. Depletion of microglia promoted neurite outgrowth, preserved dendritic spines and reduced total brain cell and neuronal apoptosis after FPI, which was accompanied by decreased the protein levels of endoplasmic reticulum stress marker proteins, C/EBP-homologous protein and inositol-requiring kinase 1α. Taken together, these findings suggest that microglial depletion may exert beneficial effects in the acute stage of FPI.


Subject(s)
Brain Injuries, Traumatic/immunology , Brain Injuries, Traumatic/pathology , Dendritic Spines/pathology , Microglia/immunology , Animals , Apoptosis/immunology , Male , Mice , Neurons/pathology
3.
Brain Behav ; 9(4): e01248, 2019 04.
Article in English | MEDLINE | ID: mdl-30834702

ABSTRACT

BACKGROUND: Mild hypothermia is wildly used in clinical treatment of traumatic brain injury (TBI). However, the effect of mild hypothermia on endoplasmic reticulum (ER) stress-induced apoptosis after severe TBI is still unknown. METHODS: In the present study, we used BALB/c mice to investigate the efficacy of posttraumatic mild hypothermia in reducing ER stress. Severe TBI was induced by controlled cortical impact injury. Mild hypothermia treatment was performed immediately after surgery and maintained for 4 hr. The animals were euthanized at 1 and 7 days after severe TBI. The expression levels of ER stress marker proteins were evaluated using Western blot and immunofluorescence. Cell apoptosis rate was analyzed by TUNEL staining. Neuronal functions of the mice were assessed using rotarod test and Morris water maze. RESULTS: Our results revealed that mild hypothermia significantly attenuated ER stress marker proteins, including p-eIF2α/eIF2α, ATF4, CHOP and IRE-1α, and reduced apoptosis rate in the pericontusion region at 1 and 7 days after severe TBI. Interestingly, mild hypothermia also prevented the translocation of CHOP into nucleus. In addition, posttraumatic mild hypothermia significantly improved neuronal functions after severe TBI. CONCLUSIONS: Our findings illustrated that mild hypothermia could reduce ER stress-induced apoptosis and improve neuronal functions after severe traumatic brain injury.


Subject(s)
Apoptosis/physiology , Brain Injuries, Traumatic/metabolism , Endoplasmic Reticulum Stress/physiology , Hypothermia, Induced/methods , Neurons/metabolism , Animals , Brain/metabolism , Male , Mice , Mice, Inbred BALB C , Rats , Rats, Sprague-Dawley
4.
J Neurotrauma ; 34(13): 2100-2108, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28145813

ABSTRACT

Traumatic brain injury (TBI) causes a primary insult and initiates a secondary injury cascade. The mechanisms underlying the secondary injury are multifactorial and may include the aberrant expression of long non-coding RNA (lncRNA) post-TBI. Here, lncRNA microarray analysis was performed to profile the altered lncRNAs in the rat hippocampus after TBI. A total of 271 lncRNA probe sets and 1046 messenger RNA (mRNA) probe sets were differentially expressed after TBI. Gene ontology analysis showed that the main components of the most significantly changed categories were inflammation, DNA transcription, apoptosis, and necroptosis. Additionally, the pathway analysis and the pathway relation network revealed correlated pathways mainly involving inflammation, cell cycle, and apoptosis. A co-expression network of these aberrantly expressed lncRNAs and mRNAs was further constructed to predict the potential function of individual lncRNAs. Sub-co-expression networks were formed for the top three lncRNAs: NR_002704, ENSRNOT00000062543, and Zfas1. Thus, our study demonstrated differential expression of a series of lncRNAs in the rat hippocampus after TBI, which may be correlated with post-TBI physiological and pathological processes. The findings also may provide novel targets for further investigation of both the molecular mechanisms underlying TBI and potential therapeutic interventions.


Subject(s)
Apoptosis/physiology , Brain Injuries, Traumatic/metabolism , Cell Cycle/physiology , Hippocampus/injuries , RNA, Long Noncoding/metabolism , Animals , Brain Injuries, Traumatic/genetics , Gene Expression Profiling , Hippocampus/metabolism , Inflammation/genetics , Inflammation/metabolism , Male , Oligonucleotide Array Sequence Analysis , RNA, Long Noncoding/genetics , Rats , Rats, Sprague-Dawley
5.
J Neurotrauma ; 34(8): 1636-1644, 2017 04 15.
Article in English | MEDLINE | ID: mdl-27923323

ABSTRACT

Mild therapeutic hypothermia is a candidate for the treatment of traumatic brain injury (TBI). However, the role of mild hypothermia in neuronal sprouting after TBI remains obscure. We used a fluid percussion injury (FPI) model to assess the effect of mild hypothermia on pericontusion neuronal sprouting after TBI in rats. Male Sprague-Dawley rats underwent FPI or sham surgery, followed by mild hypothermia treatment (33°C) or normothermia treatment (37°C) for 3 h. All the rats were euthanized at 7 days after FPI. Neuronal sprouting that was confirmed by an increase in growth associated protein-43 (GAP-43) expression was evaluated using immunofluorescence and Western blot assays. The expression levels of several intrinsic and extrinsic sprouting-associated genes such as neurite outgrowth inhibitor A (NogoA), phosphatase and tensin homolog (PTEN), and suppressor of cytokine signaling 3 (SOCS3) were analyzed by quantitative real-time polymerase chain reaction (RT-PCR). Our results revealed that mild hypothermia significantly increased the expression level of GAP-43 and dramatically suppressed the expression level of interleukin-6 (IL-6) and SOCS3 at 7 days after FPI in the ipsilateral cortex compared with that of the normothermia TBI group. These data suggest that post-traumatic mild hypothermia promotes pericontusion neuronal sprouting after TBI. Moreover, the mechanism of hypothermia-induced neuronal sprouting might be partially associated with decreased levels of SOCS3.


Subject(s)
Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/therapy , Cerebral Cortex/metabolism , GAP-43 Protein/metabolism , Hypothermia, Induced/methods , Interleukin-6/metabolism , Neurons/metabolism , Suppressor of Cytokine Signaling 3 Protein/metabolism , Animals , Brain Contusion/metabolism , Brain Contusion/therapy , Disease Models, Animal , Male , Nogo Proteins/metabolism , PTEN Phosphohydrolase/metabolism , Rats , Rats, Sprague-Dawley
6.
Sci Rep ; 6: 37063, 2016 11 11.
Article in English | MEDLINE | ID: mdl-27833158

ABSTRACT

Posttraumatic hypothermia prevents cell death and promotes functional outcomes after traumatic brain injury (TBI). However, little is known regarding the effect of hypothermia on dendrite degeneration and spine loss after severe TBI. In the present study, we used thy1-GFP transgenic mice to investigate the effect of hypothermia on the dendrites and spines in layer V/VI of the ipsilateral cortex after severe TBI. We found that hypothermia (33 °C) dramatically prevented dendrite degeneration and spine loss 1 and 7 days after CCI. The Morris water maze test revealed that hypothermia preserved the learning and memory functions of mice after CCI. Hypothermia significantly increased the expression of the synaptic proteins GluR1 and PSD-95 at 1 and 7 days after CCI in the ipsilateral cortex and hippocampus compared with that of the normothermia TBI group. Hypothermia also increased cortical and hippocampal BDNF levels. These results suggest that posttraumatic hypothermia is an effective method to prevent dendrite degeneration and spine loss and preserve learning and memory function after severe TBI. Increasing cortical and hippocampal BDNF levels might be the mechanism through which hypothermia prevents dendrite degeneration and spine loss and preserves learning and memory function.


Subject(s)
Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/physiopathology , Cerebral Cortex/pathology , Dendritic Spines/pathology , Hypothermia, Induced , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cerebral Cortex/metabolism , Disks Large Homolog 4 Protein/metabolism , Hippocampus/metabolism , Male , Maze Learning , Mice , Mice, Transgenic , Receptors, AMPA/metabolism , Synapses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...