Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Huan Jing Ke Xue ; 45(3): 1674-1683, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38471879

ABSTRACT

Carbon, nitrogen, phosphorus, and potassium in the soil are the necessary nutrient elements for plant growth, and their contents and ecological stoichiometry can reflect the status of soil quality and nutrient limitation. The Huayuankou Yellow River Floating Bridge Wetland in the lower Yellow River was selected as the research object. The methods of ANOVA, redundancy analysis, and linear regression fitting were used to study the contents of organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), alkaline nitrogen (AN), available phosphorus (AP), available potassium (AK), and their ecological stoichiometric ratios as well as the limiting elements of soil nutrients, and the key physicochemical properties that affect soil nutrients and their ecological stoichiometry in the wetland were revealed. The results showed that the mean values of ω(SOC), ω(TN), ω(TP), ω(TK), ω(AN), ω(AP), and ω(AK) in wetland soil were 5.46 g·kg-1, 0.60 g·kg-1, 0.28 g·kg-1, 17.06 g·kg-1, 13.75 mg·kg-1, 6.54 mg·kg-1, and 158.56 mg·kg-1, respectively, which showed an increasing trend from the river bank to the shoaly land and were generally higher at the high vegetation coverage areas than at the low vegetation coverage areas. There were significant correlations among SOC, TN, TP, and TK. Soil C/P, C/K, N/P, and N/K showed a consistent trend with soil nutrients, whereas C/N showed the opposite. The coefficients of variation of SOC, TN, AN, N/P, and N/K in the soil exceeded 50.00%, with significant spatial differences. The average value of C/N in wetland soil was 11.882, which was close to the average level of soils in China, whereas the average values of C/P and N/P were 49.119 and 4.516, respectively, both of which were lower than the average level of soils in China, and the N/P of soil was far less than 14, which indicated that N was limited in the soil. The proportion of clay and electrical conductivity combined to explain 61.4% and 43.9% of the variation in the soil nutrients and their ecological stoichiometry, respectively, which were the dominant soil physicochemical properties affecting the soil nutrients and their ecological stoichiometry of Huayuankou Yellow River Floating Bridge Wetland. The research results are helpful to improve our knowledge of nutrients and their influencing factors in the wetland soil of the lower Yellow River and provide an important scientific basis for the ecological restoration and management of the wetland in the lower Yellow River.

2.
Nat Commun ; 12(1): 5989, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34645818

ABSTRACT

Liquid-liquid phase separation promotes the formation of membraneless condensates that mediate diverse cellular functions, including autophagy of misfolded proteins. However, how phase separation participates in autophagy of dysfunctional mitochondria (mitophagy) remains obscure. We previously discovered that nuclear receptor Nur77 (also called TR3, NGFI-B, or NR4A1) translocates from the nucleus to mitochondria to mediate celastrol-induced mitophagy through interaction with p62/SQSTM1. Here, we show that the ubiquitinated mitochondrial Nur77 forms membraneless condensates capable of sequestrating damaged mitochondria by interacting with the UBA domain of p62/SQSTM1. However, tethering clustered mitochondria to the autophagy machinery requires an additional interaction mediated by the N-terminal intrinsically disordered region (IDR) of Nur77 and the N-terminal PB1 domain of p62/SQSTM1, which confers Nur77-p62/SQSTM1 condensates with the magnitude and liquidity. Our results demonstrate how composite multivalent interaction between Nur77 and p62/SQSTM1 coordinates to sequester damaged mitochondria and to connect targeted cargo mitochondria for autophagy, providing mechanistic insight into mitophagy.


Subject(s)
Mitochondria/drug effects , Mitophagy/drug effects , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Pentacyclic Triterpenes/pharmacology , Sequestosome-1 Protein/genetics , Animals , Electron Transport Complex IV , Female , Gene Expression Regulation , Genes, Reporter , Green Fluorescent Proteins , HeLa Cells , Humans , Luminescent Proteins , Mice , Mice, Inbred C57BL , Mitochondria/genetics , Mitochondria/metabolism , Mitophagy/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Protein Binding , Protein Transport , Recombinant Fusion Proteins , Rheology , Sequestosome-1 Protein/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Red Fluorescent Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...