Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Photonics ; 10(5): 1259-1267, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37928963

ABSTRACT

In this work, we propose a multiphysics approach to simulate all-optical helicity-dependent switching induced by the local hot spots of plasmonic nanostructures. Due to the plasmonic resonance of an array of gold nanodisks, strong electromagnetic fields are generated within the magnetic recording media underneath the gold nanodisks. We construct a multiphysics framework considering the opto-magnetic and opto-thermal effects, and then model the magnetization switching using the Monte Carlo method. Our approach bridges the gap between plasmonic nanostructure design and magnetization switching modeling, allowing for the simulation of helicity-dependent, nanoscale magnetization switching in the presence of localized surface plasmons.

2.
Nano Converg ; 7(1): 35, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33170368

ABSTRACT

The interaction between ultrafast lasers and magnetic materials is an appealing topic. It not only involves interesting fundamental questions that remain inconclusive and hence need further investigation, but also has the potential to revolutionize data storage technologies because such an opto-magnetic interaction provides an ultrafast and energy-efficient means to control magnetization. Fruitful progress has been made in this area over the past quarter century. In this paper, we review the state-of-the-art experimental and theoretical studies on magnetization dynamics and switching in ferromagnetic materials that are induced by ultrafast lasers. We start by describing the physical mechanisms of ultrafast demagnetization based on different experimental observations and theoretical methods. Both the spin-flip scattering theory and the superdiffusive spin transport model will be discussed in detail. Then, we will discuss laser-induced torques and resultant magnetization dynamics in ferromagnetic materials. Recent developments of all-optical switching (AOS) of ferromagnetic materials towards ultrafast magnetic storage and memory will also be reviewed, followed by the perspectives on the challenges and future directions in this emerging area.

3.
Nano Lett ; 20(9): 6437-6443, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32787165

ABSTRACT

In this paper, we report all-optical manipulation of magnetization in ferromagnetic Co/Pt thin films enhanced by plasmonic resonances. By annealing a thin Au layer, we fabricate large-area Au nanoislands on top of the Co/Pt magnetic thin films, which show plasmonic resonances around the wavelength of 606 nm. Using a customized magneto-optical Kerr effect setup, we experimentally observe an 18.5% decrease in the minimum laser power required to manipulate the magnetization, comparing the on- and off-resonance conditions. The results are in very good agreement with numerical simulations. Our research findings demonstrate the possibility to achieve an all-optical magnetic recording with low energy consumption, low cost, and high areal density by integrating plasmonic nanostructures with magnetic media.

4.
ACS Nano ; 11(12): 12257-12265, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29182851

ABSTRACT

Manipulation of spin degree of freedom (DOF) of electrons is the fundamental aspect of spintronic and valleytronic devices. Two-dimensional transition metal dichalcogenides (2D TMDCs) exhibit an emerging valley pseudospin, in which spin-up (-down) electrons are distributed in a +K (-K) valley. This valley polarization gives a DOF for spintronic and valleytronic devices. Recently, magnetic exchange interactions between graphene and magnetic insulator yttrium iron garnet (YIG) have been exploited. However, the physics of 2D TMDCs with YIG have not been shown before. Here we demonstrate strong many-body effects in a heterostructure geometry comprising a MoS2 monolayer and YIG. High-order trions are directly identified by mapping absorption and photoluminescence at 12 K. The electron doping density is up to ∼1013 cm-2, resulting in a large splitting of ∼40 meV between trions and excitons. The trions exhibit a high circular polarization of ∼80% under optical pumping by circularly polarized light at ∼1.96 eV; it is confirmed experimentally that both phonon scattering and electron-hole exchange interaction contribute to the valley depolarization with temperature; importantly, a magnetoresistance (MR) behavior in the MoS2 monolayer was observed, and a giant MR ratio of ∼30% is achieved, which is 1 order of magnitude larger than the reported ratio in MoS2/CoFe2O4 heterostructures. Our experimental results confirm that the giant MR behaviors are attributed to the interfacial spin accumulation due to YIG substrates. Our work provides an insight into spin manipulation in a heterostructure of monolayer materials and magnetic substrates.

5.
Nanoscale ; 9(27): 9502-9509, 2017 Jul 13.
Article in English | MEDLINE | ID: mdl-28660948

ABSTRACT

We report the magnetic proximity effect (MPE) and valley non-degeneracy in monolayer MoS2 and magnetic semiconductor EuS thin film heterojunctions studied by density functional theory (DFT) with the vdW-DF2 correlations. Magnetic moments are observed in MoS2 due to the MPE when forming chemical or van der Waals (vdW) adsorption states with EuS. Spin-orbit coupling (SOC) leads to observable valley non-degeneracy of MoS2 at the K (K') points in the Brillouin zone. The valley Zeeman splitting energy Ez can reach 5.1 meV and 37.3 meV for the vdW and chemical adsorption states, corresponding to a magnetic exchange field (MEF) of 22 T and 160 T respectively. By applying a gate voltage across the MoS2/EuS interface, it is found that Ez can be tuned from 1.8 meV to 8.2 meV and from 24.5 meV to 53.8 meV for vdW and chemical adsorption states respectively. The strong MPE, large and tunable valley degeneracy in 2D material and ferromagnetic semiconductor/insulator vdW heterojunctions demonstrate their promising potential for novel optoelectronic and valleytronic device applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...