Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 386
Filter
2.
Water Sci Technol ; 89(9): 2498-2511, 2024 May.
Article in English | MEDLINE | ID: mdl-38747963

ABSTRACT

Ventilation is paramount in sanitary and stormwater sewer systems to mitigate odor problems and avert pressure surges. Existing numerical models have constraints in practical applications in actual sewer systems due to insufficient airflow modeling or suitability only for steady-state conditions. This research endeavors to formulate a mathematical model capable of accurately simulating various operational conditions of sewer systems under the natural ventilation condition. The dynamic water flow is modeled using a shock-capturing MacCormack scheme. The dynamic airflow model amalgamates energy and momentum equations, circumventing laborious pressure iteration computations. This model utilizes friction coefficients at interfaces to enhance the description of the momentum exchange in the airflow and provide a logical explanation for air pressure. A systematic analysis indicates that this model can be easily adapted to include complex boundary conditions, facilitating its use for modeling airflow in real sewer networks. Furthermore, this research uncovers a direct correlation between the air-to-water flow rate ratio and the filling ratio under natural ventilation conditions, and an empirical formula encapsulating this relationship is derived. This finding offers insights for practical engineering applications.


Subject(s)
Models, Theoretical , Sewage , Water Movements , Drainage, Sanitary
3.
Food Chem ; 453: 139675, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38781901

ABSTRACT

Bioproduction of diverse N-acetyl chitooligosaccharides from chitin is of great value. In the study, a novel GH family 18 bifunctional chitinase gene (PsChi82) from Paenibacillus shirakamiensis was identified, expressed and biochemically characterized. PsChi82 was most active at pH 5.0, and 55 °C, and displayed remarkable pH stability with the broad pH range of 3.0-12.0. It showed high chitosanase activity of 10.6 U mg-1 and diverse hydrolysis products of GlcNAc, (GlcNAc)2, GlcN-GlcNAc and (GlcN)2-GlcNAc, which may facilitate comprehensively understanding of structure-function relationships of N-acetyl COSs. Three engineered variants were then expressed and characterized. Among them, PsChi82-CBM26 possessed specific activity of 25.1 U mg-1 against colloidal chitin, which was 2.1 folds higher than that of PsChi82. The diverse N-acetyl COSs were subsequently produced by PsChi82-CBM26 with a sugar content of 23.2 g L-1. These excellent properties may make PsChi82-CBM26 potentially useful for N-acetyl COSs production in the food and chemical industries.


Subject(s)
Bacterial Proteins , Chitin , Chitinases , Chitosan , Oligosaccharides , Paenibacillus , Chitinases/chemistry , Chitinases/genetics , Chitinases/metabolism , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Chitin/chemistry , Chitin/analogs & derivatives , Chitin/metabolism , Chitosan/chemistry , Chitosan/metabolism , Paenibacillus/enzymology , Paenibacillus/genetics , Paenibacillus/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Hydrogen-Ion Concentration , Enzyme Stability , Hydrolysis , Protein Engineering
4.
PLoS Pathog ; 20(5): e1012227, 2024 May.
Article in English | MEDLINE | ID: mdl-38739631

ABSTRACT

IFN regulatory factor 3 (IRF3) is the transcription factor crucial for the production of type I IFN in viral defence and inflammatory responses. The activity of IRF3 is strictly modulated by post-translational modifications (PTMs) to effectively protect the host from infection while avoiding excessive immunopathology. Here, we report that zebrafish myosin-regulated light chain interacting protein b (mylipb) inhibits virus-induced type I IFN production via two synergistic mechanisms: induction of autophagic degradation of irf3 and reduction of irf3 phosphorylation. In vivo, mylipb-null zebrafish exhibit reduced lethality and viral mRNA levels compared to controls. At the cellular level, overexpression of mylipb significantly reduces cellular antiviral capacity, and promotes viral proliferation. Mechanistically, mylipb associates with irf3 and targets Lys 352 to increase K6-linked polyubiquitination, dependent on its E3 ubiquitin ligase activity, leading to autophagic degradation of irf3. Meanwhile, mylipb acts as a decoy substrate for the phosphokinase tbk1 to attenuate irf3 phosphorylation and cellular antiviral responses independent of its enzymatic activity. These findings support a critical role for zebrafish mylipb in the limitation of antiviral innate immunity through two synergistic mechanisms targeting irf3.


Subject(s)
Immunity, Innate , Interferon Regulatory Factor-3 , Zebrafish Proteins , Zebrafish , Animals , Interferon Regulatory Factor-3/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Rhabdoviridae Infections/immunology , Phosphorylation , Ubiquitination , Humans , Autophagy/immunology
5.
Eur J Pharm Sci ; 199: 106794, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38788908

ABSTRACT

Myocardial fibrosis can induce cardiac dysfunction and remodeling. Great attention has been paid to traditional chinese medicine (TCM) 's effectiveness in treating MF. Radix Angelica sinensis (Oliv.) Diels and Radix Astragalus mongholicus Bunge ultrafiltration extract (RAS-RA), which is a key TCM compound preparation, have high efficacy in regulating inflammation. However, studies on its therapeutic effect on radiation-induced myocardial fibrosis (RIMF) are rare. In this study, RAS-RA had therapeutic efficacy in RIMF and elucidated its mechanism of action. First, we formulated the prediction network that described the relation of RAS-RA with RIMF according to data obtained in different databases. Then, we conducted functional enrichment to investigate the functions and pathways associated with potential RIMF targets for RAS-RA. In vivo experiments were also performed to verify these functions and pathways. Second, small animal ultrasound examinations, H&E staining, Masson staining, transmission electron microscopy, Enzyme-linked immunosorbent assay (ELISA), Western-blotting, Immunohistochemical method and biochemical assays were conducted to investigate the possible key anti-RIMF pathway in RAS-RA. In total, 440 targets were detected in those 21 effective components of RAS-RA; meanwhile, 1,646 RIMF-related disease targets were also discovered. After that, PPI network analysis was conducted to identify 20 key targets based on 215 overlap gene targets. As indicated by the gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis results, inflammation and PI3K/AKT/mTOR pathways might have important effects on the therapeutic effects on RIMF. Molecular docking analysis revealed high binding of effective components to targets (affinity < -6 kcal/mol). Based on experimental verification results, RAS-RA greatly mitigated myocardial fibrosis while recovering the cardiac activity of rats caused by X-rays. According to relevant protein expression profiles, the PI3K/AKT/mTOR pathway was important for anti-fibrosis effect of RAS-RA. Experimental studies showed that RAS-RA improved cardiac function, decreased pathological damage and collagen fiber deposition in cardiac tissues, and improved the mitochondrial structure of the heart of rats. RAS-RA also downregulated TNF-α, IL-6, and IL-1ß levels. Additionally, RAS-RA improved the liver and kidney functions and pathological injury of rat kidney and liver tissues, enhanced liver and kidney functions, and protected the liver and kidneys. RAS-RA also increased PI3K, AKT and mTOR protein levels within cardiac tissues and downregulated α-SMA, Collagen I, and Collagen III. The findings of this study suggested that RAS-RA decreased RIMF by suppressing collagen deposition and inflammatory response by inhibiting the PI3K/AKT/mTOR pathway. Thus, RAS-RA was the potential therapeutic agent used to alleviate RIMF.


Subject(s)
Angelica sinensis , Drugs, Chinese Herbal , Fibrosis , Network Pharmacology , Rats, Sprague-Dawley , Animals , Angelica sinensis/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Male , Rats , Astragalus Plant/chemistry , Myocardium/pathology , Myocardium/metabolism , Ultrafiltration/methods , Signal Transduction/drug effects , Cardiomyopathies/drug therapy , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , TOR Serine-Threonine Kinases/metabolism
6.
Signal Transduct Target Ther ; 9(1): 89, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38616190

ABSTRACT

The inadequate tumor accumulation of anti-cancer agents is a major shortcoming of current therapeutic drugs and remains an even more significant concern in the clinical prospects for nanomedicines. Various strategies aiming at regulating the intratumoral permeability of therapeutic drugs have been explored in preclinical studies, with a primary focus on vascular regulation and stromal reduction. However, these methods may trigger or facilitate tumor metastasis as a tradeoff. Therefore, there is an urgent need for innovative strategies that boost intratumoral drug accumulation without compromising treatment outcomes. As another important factor affecting drug tumor accumulation besides vasculature and stroma, the impact of tumor-associated lymphatic vessels (LVs) has not been widely considered. In the current research, we verified that anlotinib, a tyrosine kinase inhibitor with anti-lymphangiogenesis activity, and SAR131675, a selective VEGFR-3 inhibitor, effectively decreased the density of tumor lymphatic vessels in mouse cancer models, further enhancing drug accumulation in tumor tissue. By combining anlotinib with therapeutic drugs, including doxorubicin (Dox), liposomal doxorubicin (Lip-Dox), and anti-PD-L1 antibody, we observed improved anti-tumor efficacy in comparison with monotherapy regimens. Meanwhile, this strategy significantly reduced tumor metastasis and elicited stronger anti-tumor immune responses. Our work describes a new, clinically transferrable approach to augmenting intratumoral drug accumulation, which shows great potential to address the current, unsatisfactory efficacies of therapeutic drugs without introducing metastatic risk.


Subject(s)
Neoplasms , Animals , Mice , Neoplasms/drug therapy , Disease Models, Animal , Nanomedicine
7.
J Cancer Res Clin Oncol ; 150(4): 189, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605258

ABSTRACT

PURPOSE: The synergistic effects of combining arsenic compounds with imatinib against chronic myeloid leukemia (CML) have been established using in vitro data. We conducted a clinical trial to compare the efficacy of the arsenic realgar-indigo naturalis formula (RIF) plus imatinib with that of imatinib monotherapy in patients with newly diagnosed chronic phase CML (CP-CML). METHODS: In this multicenter, randomized, double-blind, phase 3 trial, 191 outpatients with newly diagnosed CP-CML were randomly assigned to receive oral RIF plus imatinib (n = 96) or placebo plus imatinib (n = 95). The primary end point was the major molecular response (MMR) at 6 months. Secondary end points include molecular response 4 (MR4), molecular response 4.5 (MR4.5), progression-free survival (PFS), overall survival (OS), and adverse events. RESULTS: The median follow-up duration was 51 months. Due to the COVID-19 pandemic, the recruitment to this study had to be terminated early, on May 28, 2020. The rates of MMR had no significant statistical difference between combination and imatinib arms at 6 months and any other time during the trial. MR4 rates were similar in both arms. However, the 12-month cumulative rates of MR4.5 in the combination and imatinib arms were 20.8% and 10.5%, respectively (p = 0.043). In core treatment since the 2-year analysis, the frequency of MR4.5 was 55.6% in the combination arm and 38.6% in the imatinib arm (p = 0.063). PFS and OS were similar at five years. The safety profiles were similar and serious adverse events were uncommon in both groups. CONCLUSION: The results of imatinib plus RIF as a first-line treatment of CP-CML compared with imatinib might be more effective for achieving a deeper molecular response (Chinadrugtrials number, CTR20170221).


Subject(s)
Antineoplastic Agents , Arsenic , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Imatinib Mesylate/adverse effects , Arsenic/therapeutic use , Pandemics , Treatment Outcome , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Antineoplastic Agents/adverse effects
8.
Food Res Int ; 184: 114273, 2024 May.
Article in English | MEDLINE | ID: mdl-38609250

ABSTRACT

Soy sauce is a traditional fermented food produced from soybean and wheat under the action of microorganisms. The soy sauce brewing process mainly involves two steps, namely koji fermentation and moromi fermentation. In the koji fermentation process, enzymes from starter molds, such as protease, aminopeptidase, carboxypeptidase, l-glutaminase, amylase, and cellulase, hydrolyze the protein and starch in the raw ingredients to produce short-chain substances. However, the enzymatic reactions may be diminished after being subjected to moromi fermentation due to its high NaCl concentration. These enzymatically hydrolyzed products are further metabolized by lactic acid bacteria and yeasts during the moromi fermentation process into organic acids and aromatic compounds, giving soy sauce a unique flavor. Thus, the starter molds, such as Aspergillus oryzae, Aspergillus sojae, and Aspergillus niger, and their secreted enzymes play crucial roles in soy sauce brewing. This review comprehensively covers the characteristics of the starter molds mainly used in soy sauce brewing, the enzymes produced by starter molds, and the roles of enzymes in the degradation of raw material. We also enumerate current problems in the production of soy sauce, aiming to offer some directions for the improvement of soy sauce taste.


Subject(s)
Soy Foods , Fermentation , Peptide Hydrolases , Aspergillus niger , Catalysis
9.
Ann Hematol ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649594

ABSTRACT

Elderly patients with lymphoproliferative diseases (LPD) are vulnerable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we retrospectively described the clinical features and outcomes of the first time infection of Omicron SARS-CoV-2 in 364 elderly patients with lymphoma enrolled in Jiangsu Cooperative Lymphoma Group (JCLG) between November 2022 and April 2023 in China. Median age was 69 years (range 60-92). 54.4% (198/364) of patients were confirmed as severe and critical COVID-19 infection. In univariable analysis, Age > 70 years (OR 1.88, p = 0.003), with multiple comorbidities (OR 1.41, p = 0.005), aggressive lymphoma (OR 2.33, p < 0.001), active disease (progressive or relapsed/refractory, OR 2.02, p < 0.001), and active anti-lymphoma therapy (OR 1.90, p < 0.001) were associated with severe COVID-19. Multiple (three or more) lines of previous anti-lymphoma therapy (OR 3.84, p = 0.021) remained an adverse factor for severe COVID-19 in multivariable analysis. Moreover, CD20 antibody (Rituximab or Obinutuzumab)-based treatments within the last 6 months was associated with severe COVID-19 in the entire cohort (OR 3.42, p < 0.001). Continuous BTK inhibitors might be protective effect on the outcome of COVID-19 infection (OR 0.44, p = 0.043) in the indolent lymphoma cohort. Overall, 7.7% (28/364) of the patients ceased, multiple lines of previous anti-lymphoma therapy (OR 3.46, p = 0.016) remained an adverse factor for mortality.

10.
Biomed Pharmacother ; 173: 116429, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490157

ABSTRACT

Fibrosis-related diseases (FRD) include conditions like myocardial fibrosis, pulmonary fibrosis, hepatic fibrosis, renal fibrosis, and others. The impact of fibrosis can be severe, causing organ dysfunction, reduced functionality, and even organ failure, leading to significant health issues. Currently, there is a lack of effective modern anti-fibrosis drugs in clinical practice. However, Chinese medicine has a certain beneficial effect on the treatment of such diseases. Angelica sinensis, with its considerable medicinal value, has garnered attention for its anti-fibrosis properties in recent investigations. In the past few years, there has been a growing number of experimental inquiries into the impact of angelica polysaccharide (ASP), angelica water extract, angelica injection, and angelica compound preparation on fibrosis-associated ailments, piquing the interest of researchers. This paper aims to consolidate recent advances in the study of Angelica sinensis for the treatment of fibrosis-related disorders, offering insights for prospective investigations. Literature retrieval included core electronic databases, including Baidu Literature, CNKI, Google-Scholar, PubMed, and Web of Science. The applied search utilized specified keywords to extract relevant information on the pharmacological and phytochemical attributes of plants. The investigation revealed that Angelica sinensis has the potential to impede the advancement of fibrotic diseases by modulating inflammation, oxidative stress, immune responses, and metabolism. ASP, Angelica sinensis extract, Angelica sinensis injection, and Angelica sinensis compound preparation were extensively examined and discussed. These constituents demonstrated significant anti-fibrosis activity. In essence, this review seeks to gain a profound understanding of the role of Angelica sinensis in treating fiber-related diseases. Organ fibrosis manifests in nearly all tissues and organs, posing a critical challenge to global public health due to its widespread occurrence, challenging early diagnosis, and unfavorable prognosis. Despite its prevalence, therapeutic options are limited, and their efficacy is constrained. Over the past few years, numerous studies have explored the protective effects of traditional Chinese medicine on organ fibrosis, with Angelica sinensis standing out as a multifunctional natural remedy. This paper provides a review of organ fibrosis pathogenesis and summarizes the recent two decades' progress in treating fibrosis in various organs such as the liver, lung, kidney, and heart. The review highlights the modulation of relevant signaling pathways through multiple targets and channels by the effective components of Angelica sinensis, whether used as a single medicine or in compound prescriptions.


Subject(s)
Angelica sinensis , Pulmonary Fibrosis , Angelica sinensis/chemistry , Prospective Studies , Phytotherapy , Medicine, Chinese Traditional , Pulmonary Fibrosis/drug therapy
11.
Int J Biol Macromol ; 265(Pt 2): 130521, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38553396

ABSTRACT

Obesity was considered as a rapidly growing chronic disease that influences human health worldwide. In this study, we investigated the primary structure characteristics of Chinese yam polysaccharide (CYP) and its role in regulating lipid metabolism in a high-fat diet (HFD)-fed obese mice. The molecular weight of CYP was determined to be 3.16 × 103 kDa. Periodic acid oxidation & smith degradation and nuclear magnetic resonance results suggested that CYP consists of 1 → 2, 1 â†’ 2, 6, 1 â†’ 4, 1 â†’ 4, 6, 1→, or 1 â†’ 6 glycoside bonds. The in vivo experiment results suggested that the biochemical indices, tissue sections, and protein regulation associated with lipid metabolism were changed after administering CYP in obese mice. In addition, the abundances of short-chain fatty acid (SCFA)-producing bacteria Lachnospiraceae, Lachnospiraceae_NK4A136_group, and Ruminococcaceae_UCG-014 were increased, and the abundances of bacteria Desulfovibrionaceae and Ruminococcus and metabolites of arginine, propionylcarnitine, and alloisoleucine were decreased after CYP intervention in obese mice. Spearman's correlation analysis of intestinal flora, metabolites, and lipid metabolism parameters showed that CYP may affect lipid metabolism in obese mice by regulating the intestinal environment. Therefore, CYP may be used as a promising nutritional intervention agent for lipid metabolism.


Subject(s)
Diet, High-Fat , Dioscorea , Mice , Humans , Animals , Diet, High-Fat/adverse effects , Mice, Obese , Mice, Inbred C57BL , Obesity/drug therapy , Obesity/etiology , Obesity/metabolism , Lipid Metabolism , Polysaccharides/pharmacology
12.
Plant J ; 118(5): 1439-1454, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38379355

ABSTRACT

Aporphine alkaloids are a large group of natural compounds with extensive pharmaceutical application prospects. The biosynthesis of aporphine alkaloids has been paid attentions in the past decades. Here, we determined the contents of four 1-benzylisoquinoline alkaloids and five aporphine alkaloids in root, stem, leaf, and flower of Aristolochia contorta Bunge, which belongs to magnoliids. Two CYP80 enzymes were identified and characterized from A. contorta. Both of them catalyze the unusual C-C phenol coupling reactions and directly form the aporphine alkaloid skeleton. AcCYP80G7 catalyzed the formation of hexacyclic aporphine corytuberine. AcCYP80Q8 catalyzed the formation of pentacyclic proaporphine glaziovine. Kingdom-wide phylogenetic analysis of the CYP80 family suggested that CYP80 first appeared in Nymphaeales. The functional divergence of hydroxylation and C-C (or C-O) phenol coupling preceded the divergence of magnoliids and eudicots. Probable crucial residues of AcCYP80Q8 were selected through sequence alignment and molecular docking. Site-directed mutagenesis revealed two crucial residues E284 and Y106 for the catalytic reaction. Identification and characterization of two aporphine skeleton-forming enzymes provide insights into the biosynthesis of aporphine alkaloids.


Subject(s)
Alkaloids , Aporphines , Aristolochia , Cytochrome P-450 Enzyme System , Phylogeny , Plant Proteins , Aporphines/metabolism , Aristolochia/enzymology , Aristolochia/metabolism , Aristolochia/genetics , Aristolochia/chemistry , Plant Proteins/metabolism , Plant Proteins/genetics , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Alkaloids/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Leaves/enzymology , Plant Roots/metabolism , Plant Roots/enzymology , Plant Roots/genetics , Flowers/enzymology , Flowers/genetics , Flowers/metabolism , Plant Stems/metabolism , Plant Stems/enzymology , Plant Stems/genetics
13.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 14-19, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38387894

ABSTRACT

OBJECTIVE: To evaluate the efficacy and safty of China-made flumatinib mesylate in the treatment of chronic myeloid leukemia in chronic phase (CML-CP). METHODS: 42 CML-CP patients treated with Chinese produced flumatinib (oral, 600 mg, 1/d) were included in the study, including 14 newly diagnosed patients and 28 patients underwent conversion therapy. The hematological, cytogenetic and molecular response and safety were observed and evaluated after 3, 6 and 12 months of treatment. RESULTS: 35 patients were treated for more than 3 months, among which 31 patients were treated for more than 6 months and 17 patients were treated for more than 12 months. After 3 months of treatment, 33 patients underwent hematological, cytogenetic and molecular examination. Of these, 32 patients achieved complete hematological response (CHR), 13 patients achieved complete cytogenetic response (CCyR), 20 patients showed BCR-ABLIS≤10% and 7 patients reached major molecular response (MMR). After 6 months of treatment, all 30 patients who could evaluate efficacy achieved CHR, of which 17 patients achieved CCyR, 18 patients showed BCR-ABLIS≤1% and 16 patients reached MMR. After 12 months of treatment, all 17 patients were evaluated for efficacy, all achieved CHR, 10 patients obtained CCyR, 7 patients reached MMR. Grade III or IV thrombocytopenia, leukopenia and anemia occurred in 7, 2 and 1 patients, respectively. The non-hematological adverse reactions were diarrhea in 6 cases, renal function damage in 4 cases, rash and pruritus in 3 cases, liver function damage in 3 cases, nausea in 1 case, fever in 1 case, bone/joint or muscle pain in 1 case. CONCLUSION: In the real world, China-made flumatinib mesylate has a positive short-term efficacy and reliable safety in the treatment of CML-CP patients, whether as first-line treatment or second- and third-line conversion therapy.


Subject(s)
Anemia , Antineoplastic Agents , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Thrombocytopenia , Humans , Imatinib Mesylate/therapeutic use , Treatment Outcome , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Protein Kinase Inhibitors/therapeutic use , China , Mesylates/therapeutic use , Antineoplastic Agents/therapeutic use , Fusion Proteins, bcr-abl/genetics
14.
Orthop Surg ; 16(4): 842-850, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38384164

ABSTRACT

OBJECTIVE: Unilateral biportal endoscopic (UBE) surgery has recently been used as a minimally invasive procedure for the treatment of lumbar spinal stenosis and is associated with less perioperative blood loss. However, perioperative hidden blood loss (HBL) may be neglected during UBE. This study aimed to examine the volume of HBL and discuss the influential risk factors for HBL during unilateral biportal endoscopic surgery. METHODS: From January 2022 to August 2022, 51 patients underwent percutaneous unilateral biportal endoscopic surgery for lumbar spinal stenosis at the Department of Spinal Surgery of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University and were enrolled in this study. The data included general indicators (age, sex and body mass index [BMI]), underlying disease (hypertension and diabetes), laboratory test results (prothrombin time [PT], activated partial thromboplastin time [APTT], fibrinogen [Fbg]), and preoperative and postoperative hematocrit and hemoglobin), related imaging parameters (severity of intervertebral disc [IVD] degeneration and soft tissue thickness of the interlaminar approach), number of operated vertebrae and operation time. Total blood loss (TBL) and HBL during surgical procedures were measured via the Gross formula. Influential factors were further analyzed by multivariate linear regression analysis and t-tests. RESULTS: The mean HBL was 257.89 ± 190.66 mL for single-operation patients and 296.58 ± 269.75 mL for two-operation patients. Patients with lower PT (p = 0.044), deeper tissue thickness (p = 0.047), and diabetes mellitus were determined to have more HBL during UBE. The operation time might also be an important factor (p = 0.047). However, sex (p = 0.265), age (p = 0.771/0.624), BMI (p = 0.655/0.664), APTT (p = 0.545/0.751), degree of degenerated IVD (p = 0.932/0.477), and hypertension (p = 0.356/0.896) were not related to HBL. CONCLUSION: This study determined the different influential factors of HBL during UBE. PT, tissue thickness, and diabetes mellitus are the independent risk factors that affect HBL incidence. Long PT may decrease the volume of HBL within a certain range. Tissue thickness and diabetes mellitus can lead to an increased volume of HBL.


Subject(s)
Diabetes Mellitus , Hypertension , Spinal Fusion , Spinal Stenosis , Humans , Blood Loss, Surgical , Retrospective Studies , Spinal Stenosis/surgery , Spinal Stenosis/etiology , Lumbar Vertebrae/surgery , Endoscopy , Risk Factors , Treatment Outcome , Spinal Fusion/methods
15.
Ann Hematol ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38270644

ABSTRACT

To investigate the prognostic impact of serum beta-2 microglobulin (B2M) in adult lymphoma-associated hemophagocytic lymphohistiocytosis (HLH). The clinical and laboratory characteristics of 326 adult patients in a multicenter cohort with lymphoma-associated HLH with available baseline serum B2M levels were retrospectively analyzed. A total of 326 cases were included in this study, and the median serum B2M level was 5.19 mg/L. The optimal cut-off of serum B2M was 8.73 mg/L, and the cases with serum B2M level >8.73 mg/L were older and had a more advanced stage, lower levels of platelets, albumin, and fibrinogen, and higher creatinine level. The serum B2M >8.73 mg/L, creatinine ≥133 µmol/L, fibrinogen ≤1.5 g/L, agranulocytosis (<0.5 × 109/L), severe thrombocytopenia (<50 × 109/L), and high Epstein-Barr virus DNA copy number were found to have independent prognostic values in all patients, and the serum B2M >8.73 mg/L was also an independent prognostic factor in patients with creatinine <133 µmol/L. Finally, a prognostic scoring system was established based on independent prognostic factors of all patients and categorized the patients into three groups with significant prognostic differences. This study confirmed that the serum B2M level can be an independent prognostic factor in lymphoma-associated HLH and established a prognostic scoring system to predict patients' survival.

16.
J Immunol ; 212(4): 723-736, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38197667

ABSTRACT

N 6-methyladenosine (m6A) is the most abundant mRNA modification in mammals and it plays a vital role in various biological processes. However, the roles of m6A on cervical cancer tumorigenesis, especially macrophages infiltrated in the tumor microenvironment of cervical cancer, are still unclear. We analyzed the abnormal m6A methylation in cervical cancer, using CaSki and THP-1 cell lines, that might influence macrophage polarization and/or function in the tumor microenvironment. In addition, C57BL/6J and BALB/c nude mice were used for validation in vivo. In this study, m6A methylated RNA immunoprecipitation sequencing analysis revealed the m6A profiles in cervical cancer. Then, we discovered that the high expression of METTL14 (methyltransferase 14, N6-adenosine-methyltransferase subunit) in cervical cancer tissues can promote the proportion of programmed cell death protein 1 (PD-1)-positive tumor-associated macrophages, which have an obstacle to devour tumor cells. Functionally, changes of METTL14 in cervical cancer inhibit the recognition and phagocytosis of macrophages to tumor cells. Mechanistically, the abnormality of METTL14 could target the glycolysis of tumors in vivo and vitro. Moreover, lactate acid produced by tumor glycolysis has an important role in the PD-1 expression of tumor-associated macrophages as a proinflammatory and immunosuppressive mediator. In this study, we revealed the effect of glycolysis regulated by METTL14 on the expression of PD-1 and phagocytosis of macrophages, which showed that METTL14 was a potential therapeutic target for treating advanced human cancers.


Subject(s)
Methyltransferases , Uterine Cervical Neoplasms , Animals , Female , Humans , Mice , Adenosine/analogs & derivatives , Glycolysis , Macrophages , Mammals , Methyltransferases/metabolism , Mice, Inbred C57BL , Mice, Nude , Phagocytosis , Phenotype , Programmed Cell Death 1 Receptor , Tumor Microenvironment , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/enzymology , Uterine Cervical Neoplasms/immunology , Cell Line, Tumor
17.
Int J Environ Health Res ; 34(5): 2378-2386, 2024 May.
Article in English | MEDLINE | ID: mdl-37634141

ABSTRACT

With the outbreak of coronavirus disease 2019 (COVID-19), there has been an increasing focus on exploring the relationship between SARS-CoV-2 infection and tumors. However, there is no consensus on the association between COVID-19 and lymphoma. In this study, genome-wide association study (GWAS) summary data sets for COVID-19 and lymphoma were obtained from the OPEN GWAS website. Single nucleotide polymorphisms (SNPs) were selected as genetic instrument variants for fulling P < 5 × 10-8 and linkage disequilibrium [LD] r2 < 0.001. Both palindromic and outlier SNPs were removed. Cochran's Q test, the MR‒Egger intercept test, and leave-one-out analysis were employed to assess the sensitivity of the effect of COVID-19 on lymphoma. The results showed that COVID-19 patients with very severe respiratory symptoms have an increased risk of developing diffuse large B-cell lymphoma (IVW, OR = 1.765, 95% CI 1.174-2.651, P = 0.006). There was no association between COVID-19 with very severe respiratory symptoms and Hodgkin's lymphoma or other types of non-Hodgkin's lymphoma. No horizontal or directional pleiotropy was observed in the Mendelian randomization analysis. In conclusion, SARS-CoV-2 infection with very severe respiratory symptoms may be a potential risk factor for diffuse large B-cell lymphoma (DLBCL), and follow-up studies with larger samples are needed.


Subject(s)
COVID-19 , Lymphoma, Large B-Cell, Diffuse , Humans , Genome-Wide Association Study , Mendelian Randomization Analysis , COVID-19/genetics , SARS-CoV-2 , Lymphoma, Large B-Cell, Diffuse/epidemiology , Lymphoma, Large B-Cell, Diffuse/genetics
18.
Chem Commun (Camb) ; 60(6): 682-685, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38054857

ABSTRACT

Efficient conversion of C1 molecules into multicarbon oxygenates is a promising avenue for energy storage. Herein, we synthesize adjustable alkanoic acids/alcohols from formate C1 molecules via a hydrothermal reaction without any metal catalyst participation. This is achieved via HCO* and HCOO- nonsymmetric C-C coupling by alkali catalysis in aqueous medium.

19.
Cancer Innov ; 2(5): 391-404, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38090380

ABSTRACT

Background: Patients frequently die from cardiac causes after radiotherapy for esophageal cancer. Early detection of cardiac death risk in these patients is crucial to improve clinical decision-making and prognosis. Thus, we modeled the risk of cardiac death after irradiation for esophageal cancer. Methods: A retrospective analysis of 37,599 esophageal cancer cases treated with radiotherapy in the SEER database between 2000 and 2018 was performed. The selected cases were randomly assigned to the model development group (n = 26,320) and model validation group (n = 11,279) at a ratio of 7:3. We identified the risk factors most commonly associated with cardiac death by least absolute shrinkage and selection operator regression analysis (LASSO). The endpoints for model development and validation were 5- and 10-year survival rates. The net clinical benefit of the models was evaluated by decision curve analysis (DCA) and concordance index (C-index). The performance of the models was further assessed by creating a receiver operating characteristic curve (ROC) and calculating the area under the curve (AUC). Kaplan-Meier (K-M) survival analysis was performed on the probability of death. Patients were classified according to death probability thresholds. Five- and ten-year survival rates for the two groups were shown using K-M curves. Results: The major risk factors for cardiac death were age, surgery, year of diagnosis, sequence of surgery and radiotherapy, chemotherapy and a number of tumors, which were used to create the nomogram. The C-indexes of the nomograms were 0.708 and 0.679 for the development and validation groups, respectively. DCA showed the good net clinical benefit of nomograms in predicting 5- and 10-year risk of cardiac death. The model exhibited moderate predictive power for 5- and 10-year cardiac mortality (AUC: 0.833 and 0.854, respectively), and for the development and validation cohorts (AUC: 0.76 and 0.813, respectively). Conclusions: Our nomogram may assist clinicians in making clinical decisions about patients undergoing radiotherapy for esophageal cancer based on early detection of cardiac death risk.

20.
Medicine (Baltimore) ; 102(50): e36498, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38115374

ABSTRACT

The introduction of tyrosine kinase inhibitors (TKIs) has revolutionized chronic myeloid leukemia (CML) treatment. The knowledge, attitude, and practice (KAP) of patients and their families play a significant role in treatment adherence and effectiveness. This study aimed to investigate the KAP of CML patients and their families regarding TKI therapy in China. From November 1 to December 31, 2022, a cross-sectional study was conducted at the Affiliated Huai'an No. 1 People's Hospital in China. A total of 313 CML patients and 268 family caregivers were selected using convenience sampling. Participants answered a self-designed questionnaire. The questionnaire contained demographic/clinical data and assessed KAP toward CML and TKI therapy. Participants exhibited mean KAP scores of 8.91 (55.7%), 33.10 (73.6%), and 2.20 (73.3%), respectively. Family members had higher knowledge and practice scores than patients (both P < .05), with factors such as younger age, urban residency, higher education, employment, higher income, and interaction with peers correlating with better knowledge scores (P < .001). Although participants were well-informed about their diagnosis and medication (>80%), understanding of disease causes (<30%) and treatment prognosis and side effects (<50%) was limited, and cost concerns affected 80.55%. Anxiety and depression were reported more among caregivers (46.64% and 13.8%) than patients (29.71% and 11.51%). While 84.85% adhered to the doctor's instructions, only 68.50% actively sought more CML information. Positive correlations were observed among KAP scores, indicating their interdependence (knowledge-attitude: R = 0.397; knowledge-practice: R = 0.598; attitude-practice: R = 0.353; all P < .001). The findings underscore the importance of tailored education to fill knowledge gaps about CML and the need to address financial concerns and provide psychological support. The positive correlations among knowledge, attitudes, and practices emphasize the need for comprehensive interventions. In conclusion, this study highlights the importance of tailored education, addresses financial concerns, and provides emotional support for CML patients and caregivers in China, despite limitations such as convenience sampling and questionnaire design. Future research should evaluate the effectiveness of educational interventions and long-term outcomes to further enhance the overall well-being of this population.


Subject(s)
Health Knowledge, Attitudes, Practice , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Cross-Sectional Studies , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Surveys and Questionnaires , China
SELECTION OF CITATIONS
SEARCH DETAIL
...