Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 16(23): 11038-11051, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38691093

ABSTRACT

Reproducibility issues resulting from particle growth solutions made with cetyltrimethylammonium bromide (CTAB) surfactant from different lots and product lines in a newly developed synthesis of monometallic palladium (Pd) tetrahexahedra (THH) nanoparticles are investigated via a multi-pronged approach. Time-resolved electrochemical measurements of solution potential, variation of chemical parameters in colloidal synthesis, and correlation to electrodeposition syntheses are used together to uncover the effects of the unknown contaminants on the chemical reducing environment during nanoparticle growth. Iodide-a known impurity in commercial CTAB-is identified as one of the required components for equalizing the reducing environment across multiple CTAB sources. However, an additional component-acetone-is critical to establishing the growth kinetics necessary to enable the reproducible synthesis of THH in each of the CTAB formulations. In one CTAB variety, the powdered surfactant contains too much acetone, and drying of the as-received surfactant and re-addition of solvent is necessary for successful Pd THH synthesis. The relevance of solvent impurities to the reducing environment in aqueous nanoparticle synthesis is confirmed via electrochemical measurement approaches and solvent addition experiments. This work highlights the utility of real-time electrochemical potential measurements as a tool for benchmarking of nanoparticle syntheses and troubleshooting of reproducibility issues. The results additionally emphasize the importance of considering organic solvent impurities in powdered commercial reagents as a possible shape-determining factor during shaped nanomaterials synthesis.

2.
Angew Chem Int Ed Engl ; 62(8): e202217941, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36583627

ABSTRACT

The inability to re-process thermosets hinders their utility and sustainability. An ideal material should combine closed-loop recycling and upcycling capabilities. This trait is realized in polydimethylsiloxane bottlebrush networks using thermoreversible Diels-Alder cycloadditions to enable both reversible disassembly into a polymer melt and on-demand reconfiguration to an elastomer of either lower or higher stiffness. The crosslink density was tuned by loading the functionalized networks with a controlled fraction of dormant crosslinkers and crosslinker scavengers, such as furan-capped bis-maleimide and anthracene, respectively. The resulting modulus variations precisely followed the stoichiometry of activated furan and maleimide moieties, demonstrating the lack of side reactions during reprocessing. The presented circularity concept is independent from the backbone or side chain chemistry, making it potentially applicable to a wide range of brush-like polymers.

3.
Pflugers Arch ; 473(11): 1749-1760, 2021 11.
Article in English | MEDLINE | ID: mdl-34455480

ABSTRACT

We compared the regulation of the NaCl cotransporter (NCC) in adaptation to a low-K (LK) diet in male and female mice. We measured hydrochlorothiazide (HCTZ)-induced changes in urine volume (UV), glomerular filtration rate (GFR), absolute (ENa, EK), and fractional (FENa, FEK) excretion in male and female mice on control-K (CK, 1% KCl) and LK (0.1% KCl) diets for 7 days. With CK, NCC-dependent ENa and FENa were larger in females than males as observed previously. However, with LK, HCTZ-induced ENa and FENa increased in males but not in females, abolishing the sex differences in NCC function as observed in CK group. Despite large diuretic and natriuretic responses to HCTZ, EK was only slightly increased in response to the drug when animals were on LK. This suggests that the K-secretory apparatus in the distal nephron is strongly suppressed under these conditions. We also examined LK-induced changes in Na transport protein expression by Western blotting. Under CK conditions females expressed more NCC protein, as previously reported. LK doubled both total (tNCC) and phosphorylated NCC (pNCC) abundance in males but had more modest effects in females. The larger effect in males abolished the sex-dependence of NCC expression, consistent with the measurements of function by renal clearance. LK intake did not change NHE3, NHE2, or NKCC2 expression, but reduced the amount of the cleaved (presumably active) form of γENaC. LK reduced plasma K to lower levels in females than males. These results indicated that males had a stronger NCC-mediated adaptation to LK intake than females.


Subject(s)
Cations/metabolism , Ion Transport/physiology , Potassium Channels, Inwardly Rectifying/metabolism , Thiazides/pharmacology , Animals , Diuretics/pharmacology , Female , Glomerular Filtration Rate/drug effects , Ion Transport/drug effects , Kidney Tubules, Distal/drug effects , Kidney Tubules, Distal/metabolism , Male , Mice , Mice, Inbred C57BL , Nephrons/drug effects , Nephrons/metabolism , Sex Characteristics , Sodium/metabolism , Solute Carrier Family 12, Member 3/metabolism
4.
J Am Chem Soc ; 142(51): 21322-21335, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33237754

ABSTRACT

The synthesis of shaped metal nanoparticles to meet the precise needs of emerging applications requires intentional synthetic design directed by fundamental chemical principles. We report an integrated electrochemistry approach to nanoparticle synthetic design that couples current-driven growth of metal nanoparticles on an electrode surface-in close analogy to standard colloidal synthesis-with electrochemical measurements of both electrochemical and colloidal nanoparticle growth. A simple chronopotentiometry method was used to translate an existing colloidal synthesis for corrugated palladium (Pd) nanoparticles to electrochemical growth on a glassy carbon electrode, with minimal modification to the growth solution. The electrochemical synthesis method was then utilized to produce large Pd icosahedra, a shape whose synthesis is challenging in a colloidal growth environment. This electrochemical synthesis for Pd icosahedra was used to develop a corresponding colloidal growth solution by tailoring a weak reducing agent to the measured potential profile of the electrochemical synthesis. Finally, measurements of colloidal syntheses were employed as guides for the directed design of electrochemical syntheses for Pd cubes and octahedra. Together, this work provides a cyclical approach to shaped nanoparticle design that allows for the optimization of nanoparticles grown via a colloidal approach with a chemical reducing agent or synthesized with an applied current on an electrode surface as well as subsequent bidirectional translation between the two methods. The enhanced chemical flexibility and direct tunability of this electrochemical method relative to combinatorial design of colloidal syntheses have the potential to accelerate the synthetic design process for noble metal nanoparticles with targeted morphologies.

5.
Am J Physiol Renal Physiol ; 317(4): F967-F977, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31390232

ABSTRACT

We studied sex differences in response to high K+ (HK) intake on thiazide-sensitive cation (Na+ and K+) excretion in wild-type (WT) and ANG II receptor subtype 1a (AT1aR) knockout (KO) mice. Renal clearance experiments were performed to examine Na+-Cl- cotransporter (NCC) activity on mice fed with control and HK (5% KCl, 7 days) diets. Hydrochlorothiazide (HCTZ)-induced changes in urine volume, glomerular filtration rate, absolute Na+ and K+ excretion, and fractional excretion were compared. HK-induced changes in NCC, Na+/H+ exchanger isoform 3 (NHE3), and ENaC expression were examined by Western blot analysis. In WT animals under the control diet, HCTZ-induced cation excretion was greater in female animals, reflecting larger increases in Na+ excretion, since there was little sex difference in HCTZ-induced K+ excretion. Under the HK diet, the sex difference in HCTZ-induced cation excretion was reduced because of larger increments in K+ excretion in male animals. The fraction of K+ excretion was 57 ± 5% in male WT animals and 36 ± 4% in female WT animals (P < 0.05), but this difference was absent in AT1aR KO mice. NCC abundance was higher in female animals than in male animals but decreased by similar fractions on HK diet. NHE3 abundance decreased, whereas cleaved forms of γ-ENaC increased, with HK in all groups; these changes were similar in male and female animals and were not significantly affected by AT1aR ablation. These results indicate that, with the HK diet, male animals display greater distal Na+ delivery and greater activation of K+ secretion mechanisms, all suggesting a more powerful male adaptation to HK intake.


Subject(s)
Cations/urine , Diuretics/pharmacology , Electron Transport Complex II/metabolism , Hydrochlorothiazide/pharmacology , Kidney/metabolism , Potassium/pharmacology , Animals , Female , Glomerular Filtration Rate , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Potassium/urine , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/metabolism , Sex Characteristics , Sodium-Hydrogen Exchanger 3/metabolism , Sodium-Potassium-Chloride Symporters/metabolism , Urodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...