Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Rheum Dis ; 27(1): e14990, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38078507

ABSTRACT

OBJECTIVES: To measure the expression of vimentin and its phosphorylated forms in lupus nephritis (LN) and explore their potential role in LN development. METHODS: Lupus renal biopsies from LN patients and normal renal biopsies from kidney transplant donors were collected. The expression of vimentin and its phosphorylated forms (p-vimentin (Ser39, Ser56, Ser72, Ser83, and Tyr117)) were measured by Western blots and immunohistochemistry. To construct stable cell line that overexpress vimentin and its phosphorylated forms, an immortalized proximal tubule epithelial cell line (HK-2 cells) was utilized. The roles of vimentin and its phosphorylated forms on the migration of HK-2 cells were examined by transwell migration assay and wound healing analysis. RESULTS: We first observed a significant upregulation of vimentin protein in TGFß1-induced HK-2 cells. This finding was further confirmed in renal tissues obtained from LN patients and animal model. Interestingly, among the five phosphorylated forms of vimentin, only vimentin phosphorylated at Ser72 was upregulated in LN. Through the establishment of stable vimentin and its phosphorylated forms overexpression in HK-2 cells, we found that the overexpression of vimentin and its phosphorylated forms at Ser72 significantly enhances the cell migration. CONCLUSIONS: Vimentin phosphorylated on Ser72 is important for renal epithelial cell migration, which would enhance the progression of vimentin-induced epithelial-mesenchymal transition during LN development.


Subject(s)
Lupus Nephritis , Animals , Humans , Lupus Nephritis/pathology , Vimentin/metabolism , Kidney/pathology , Epithelial-Mesenchymal Transition , Epithelial Cells/metabolism
2.
Adv Mater ; 36(7): e2310033, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37994246

ABSTRACT

Single-atom nanozymes (SANzymes) emerge as promising alternatives to conventional enzymes. However, chemical instability limits their application. Here, a systematic synthesis of highly active and stable SANzymes is presented by leveraging noble metal-porphyrins. Four noble metal-porphyrins are successfully synthesized to mimic the active site of natural peroxidases through atomic metal-N coordination anchored to the porphyrin center. These noble metal-porphyrins are integrated into a stable and biocompatible Zr-based metal-organic framework (MxP, x denoting Ir, Ru, Pt, and Pd). Among these, MIrP demonstrates superior peroxidase-like activity (685.61 U mg-1 ), catalytic efficiency, and selectivity compared to horseradish peroxidase (267.71 U mg-1 ). Mechanistic investigations unveil heightened catalytic activity of MIrP arises from its robust H2 O2 adsorption capacity, unique rate-determining step, and low energy threshold. Crucially, MIrP exhibits remarkable chemical stability under both room temperature and high H2 O2 concentrations. Further, through modification with (-)-Epigallocatechin-3-Gallate, a natural ligand for Epstein-Barr virus (EBV)-encoded latent membrane protein 1, targeted SANzyme (MIrPHE) tailored for EBV-associated nasopharyngeal carcinoma is engineered. This study not only presents an innovative strategy for augmenting the catalytic activity and chemical stability of SANzymes but also highlights the substantial potential of MIrP as a potent nanomedicine for targeted catalytic tumor therapy.


Subject(s)
Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma , Herpesvirus 4, Human , Engineering , Catalysis , Metals
3.
Adv Healthc Mater ; 13(11): e2303623, 2024 04.
Article in English | MEDLINE | ID: mdl-38142309

ABSTRACT

PD-1/PD-L1 blockade immunotherapy has gained approval for the treatment of a diverse range of tumors; however, its efficacy is constrained by the insufficient infiltration of T lymphocytes into the tumor microenvironment, resulting in suboptimal patient responses. Here, a pioneering immunotherapy ferritin nanodrug delivery system denoted as ITFn-Pt(IV) is introduced. This system orchestrates a synergistic fusion of PD-L1 blockade, chemotherapy, and T-cell activation, aiming to augment the efficacy of tumor immunotherapy. Leveraging genetic engineering approach and temperature-regulated channel-based drug loading techniques, the architecture of this intelligent responsive system is refined. It is adept at facilitating the precise release of T-cell activating peptide Tα1 in the tumor milieu, leading to an elevation in T-cell proliferation and activation. The integration of PD-L1 nanobody KN035 ensures targeted engagement with tumor cells and mediates the intracellular delivery of the encapsulated Pt(IV) drugs, culminating in immunogenic cell death and the subsequent dendritic cell maturation. Employing esophageal squamous cell carcinoma (ESCC) as tumor model, the potent antitumor efficacy of ITFn-Pt(IV) is elucidated, underscored by augmented T-cell infiltration devoid of systemic adverse effects. These findings accentuate the potential of ITFn-Pt(IV) for ESCC treatment and its applicability to other malignancies resistant to established PD-1/PD-L1 blockade therapies.


Subject(s)
B7-H1 Antigen , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , T-Lymphocytes , Animals , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Esophageal Neoplasms/immunology , Humans , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , Mice , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/therapy , Cell Line, Tumor , Lymphocyte Activation/drug effects , Ferritins/chemistry , Tumor Microenvironment/drug effects , Immunotherapy/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Nanoparticles/chemistry , Drug Delivery Systems/methods
4.
J Clin Invest ; 131(21)2021 11 01.
Article in English | MEDLINE | ID: mdl-34491908

ABSTRACT

Initiation of T cell receptor (TCR) signaling involves the activation of the tyrosine kinase LCK; however, it is currently unclear how LCK is recruited and activated. Here, we have identified the membrane protein CD146 as an essential member of the TCR network for LCK activation. CD146 deficiency in T cells substantially impaired thymocyte development and peripheral activation, both of which depend on TCR signaling. CD146 was found to directly interact with the SH3 domain of coreceptor-free LCK via its cytoplasmic domain. Interestingly, we found CD146 to be present in both monomeric and dimeric forms in T cells, with the dimerized form increasing after TCR ligation. Increased dimerized CD146 recruited LCK and promoted LCK autophosphorylation. In tumor models, CD146 deficiency dramatically impaired the antitumor response of T cells. Together, our data reveal an LCK activation mechanism for TCR initiation. We also underscore a rational intervention based on CD146 for tumor immunotherapy.


Subject(s)
Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/immunology , Neoplasms, Experimental/immunology , Receptors, Antigen, T-Cell/immunology , Signal Transduction/immunology , T-Lymphocytes/immunology , Animals , CD146 Antigen/genetics , CD146 Antigen/immunology , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics , Mice , Mice, Knockout , Neoplasms, Experimental/genetics , Neoplasms, Experimental/therapy , Receptors, Antigen, T-Cell/genetics , Signal Transduction/genetics
5.
Nano Today ; 40: 101243, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34249143

ABSTRACT

The outbreak of SARS-coronavirus 2 (SARS-CoV2) has become a global health emergency. Although enormous efforts have been made, there is still no effective treatment against the new virus. Herein, a TiO2 supported single-atom nanozyme containing atomically dispersed Ag atoms (Ag-TiO2 SAN) is designed to serve as a highly efficient antiviral nanomaterial. Compared with traditional nano-TiO2 and Ag, Ag-TiO2 SAN exhibits higher adsorption (99.65%) of SARS-CoV2 pseudovirus. This adsorption ability is due to the interaction between SAN and receptor binding domain (RBD) of spike 1 protein of SARS-CoV2. Theoretical calculation and experimental evidences indicate that the Ag atoms of SAN strongly bind to cysteine and asparagine, which are the most abundant amino acids on the surface of spike 1 RBD. After binding to the virus, the SAN/virus complex is typically phagocytosed by macrophages and colocalized with lysosomes. Interestingly, Ag-TiO2 SAN possesses high peroxidase-like activity responsible for reactive oxygen species production under acid conditions. The highly acidic microenvironment of lysosomes could favor oxygen reduction reaction process to eliminate the virus. With hACE2 transgenic mice, Ag-TiO2 SAN showed efficient anti-SARS-CoV2 pseudovirus activity. In conclusion, Ag-TiO2 SAN is a promising nanomaterial to achieve effective antiviral effects for SARS-CoV2.

6.
Theranostics ; 10(1): 231-246, 2020.
Article in English | MEDLINE | ID: mdl-31903117

ABSTRACT

The blood-brain barrier (BBB) dysfunction is an initial event of various neuroinflammatory diseases. However, the absence of reliable markers and mechanisms for BBB damage greatly limits the diagnosis and treatment of neuroinflammatory diseases. Soluble CD146 (sCD146) is mainly derived from vascular endothelial cells (ECs) and highly elevated in inflammatory settings. Based on a small cohort, our previous study showed that sCD146 is elevated in the cerebrospinal fluid (CSF) of multiple sclerosis (MS), which is accompanied with BBB damage. Nevertheless, whether sCD146 monitors and regulates the BBB dysfunction remains unknown. Methods: Coupled serum and CSF samples from patients with or without neuroinflammatory diseases were collected via multicenter collaborations. sCD146 was measured by sandwich ELISA using anti-CD146 antibodies AA1 and AA98, both of which were generated in our laboratory. The correlations between sCD146 and other clinical parameters or inflammatory factors were analyzed by Spearman's correlation coefficient analysis. The role of sCD146 on BBB function was examined in an in vitro BBB model. Results: Between July 20, 2011, and February 31, 2017, we collected coupled serum and CSF samples from 823 patients, of which 562 (68.3%) had neuroinflammatory diseases, 44 (5.3%) had remitting MS, and 217 (26.4%) had non-inflammatory neurological diseases (NIND). We found that sCD146 in CSF, but not in serum, is abnormally elevated in neuroinflammatory diseases (37.3 ± 13.3 ng/mL) compared with NIND (4.7 ± 2.9 ng/mL) and remitting MS (4.6 ± 3.5 ng/mL). Abnormally elevated CSF sCD146 is significantly correlated with the hyperpermeability-related clinical parameters of BBB and neuroinflammation-related factors. Moreover, CSF sCD146 shows higher sensitivity and specificity for evaluating BBB damage. Using an in vitro BBB model, we found that sCD146 impairs BBB function by promoting BBB permeability via an association with integrin αvß1. Blocking integrin αvß1 significantly attenuates sCD146-induced hyperpermeability of the BBB. Conclusion: Our study provides convincing evidence that CSF sCD146 is a sensitive marker of BBB damage and neuroinflammation. Furthermore, sCD146 is actively involved in BBB dysfunction.


Subject(s)
Blood-Brain Barrier/pathology , CD146 Antigen/cerebrospinal fluid , Central Nervous System Diseases/cerebrospinal fluid , Endothelial Cells , Inflammation/cerebrospinal fluid , Adult , Aged , Biomarkers/blood , Biomarkers/cerebrospinal fluid , CD146 Antigen/blood , Cell Line , Central Nervous System Diseases/blood , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Humans , Inflammation/blood , Male , Middle Aged , Young Adult
7.
PLoS One ; 10(11): e0143284, 2015.
Article in English | MEDLINE | ID: mdl-26605542

ABSTRACT

Disconnected (disco)-interacting protein 2 homolog A is a member of the DIP2 protein family encoded by Dip2a gene. Dip2a expression pattern has never been systematically studied. Functions of Dip2a in embryonic development and adult are not known. To investigate Dip2a gene expression and function in embryo and adult, a Dip2a-LacZ mouse model was generated by insertion of ß-Gal cDNA after Dip2a promoter using CRISPR/Cas9 technology. Dip2a-LacZ mouse was designed to be a lacZ reporter mouse as well as a Dip2a knockout mouse. Heterozygous mice were used to study endogenous Dip2a expression and homozygotes to study DIP2A-associated structure and function. LacZ staining indicated that Dip2a is broadly expressed in neuronal, reproductive and vascular tissues, as well as in heart, kidney, liver and lung. Results demonstrate that Dip2a is expressed in ectoderm-derived tissues in developing embryos. Adult tissues showed rich staining in neurons, mesenchymal, endothelial, smooth muscle cells and cardiomyocytes by cell types. The expression pattern highly overlaps with FSTL1 and supports previous report that DIP2A to be potential receptor of FSTL1 and its protective roles of cardiomyocytes. Broad and intense embryonic and adult expression of Dip2a has implied their multiple structural and physiological roles.


Subject(s)
Gene Expression Regulation , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Animals , Embryo, Mammalian , Female , Gene Expression , Gene Expression Regulation, Developmental , Genes, Reporter , Immunohistochemistry , Male , Mice , Mice, Transgenic , Nuclear Proteins , Organ Specificity/genetics , beta-Galactosidase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...