Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 7028, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38528062

ABSTRACT

Accurate indel calling plays an important role in precision medicine. A benchmarking indel set is essential for thoroughly evaluating the indel calling performance of bioinformatics pipelines. A reference sample with a set of known-positive variants was developed in the FDA-led Sequencing Quality Control Phase 2 (SEQC2) project, but the known indels in the known-positive set were limited. This project sought to provide an enriched set of known indels that would be more translationally relevant by focusing on additional cancer related regions. A thorough manual review process completed by 42 reviewers, two advisors, and a judging panel of three researchers significantly enriched the known indel set by an additional 516 indels. The extended benchmarking indel set has a large range of variant allele frequencies (VAFs), with 87% of them having a VAF below 20% in reference Sample A. The reference Sample A and the indel set can be used for comprehensive benchmarking of indel calling across a wider range of VAF values in the lower range. Indel length was also variable, but the majority were under 10 base pairs (bps). Most of the indels were within coding regions, with the remainder in the gene regulatory regions. Although high confidence can be derived from the robust study design and meticulous human review, this extensive indel set has not undergone orthogonal validation. The extended benchmarking indel set, along with the indels in the previously published known-positive set, was the truth set used to benchmark indel calling pipelines in a community challenge hosted on the precisionFDA platform. This benchmarking indel set and reference samples can be utilized for a comprehensive evaluation of indel calling pipelines. Additionally, the insights and solutions obtained during the manual review process can aid in improving the performance of these pipelines.


Subject(s)
Benchmarking , High-Throughput Nucleotide Sequencing , Humans , Computational Biology , Quality Control , INDEL Mutation , Polymorphism, Single Nucleotide
2.
Front Genet ; 13: 1033214, 2022.
Article in English | MEDLINE | ID: mdl-36425064

ABSTRACT

The tumor heterogeneity of the transcriptional profiles is independent of genetic variation. Several studies have successfully identified esophageal squamous cell carcinoma (ESCC) subtypes based on the somatic mutation profile and copy number variations on the genome. However, transcriptome-based classification is limited. In this study, we classified 141 patients with ESCC into three subtypes (Subtype 1, Subtype 2, and Subtype 3) via tumor sample gene expression profiling. Differential gene expression (DGE) analysis of paired tumor and normal samples for each subtype revealed significant difference among subtypes. Moreover, the degree of change in the expression levels of most genes gradually increased from Subtype 1 to Subtype 3. Gene set enrichment analysis (GSEA) identified the representative pathways in each subtype: Subtype 1, abnormal Wnt signaling pathway activation; Subtype 2, inhibition of glycogen metabolism; and Subtype 3, downregulation of neutrophil degranulation process. Weighted gene co-expression network analysis (WGCNA) was used to elucidate the finer regulation of biological pathways and discover hub genes. Subsequently, nine hub genes (CORO1A, CD180, SASH3, CD52, CD300A, CD14, DUSP1, KIF14, and MCM2) were validated to be associated with survival in ESCC based on the RNA sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA) database. The clustering analysis of ESCC granted better understanding of the molecular characteristics of ESCC and led to the discover of new potential therapeutic targets that may contribute to the clinical treatment of ESCC.

3.
Int J Biol Sci ; 7(4): 418-25, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21547059

ABSTRACT

Mammalian embryos at the blastocyst stage have three major lineages, which in culture can give rise to embryonic stem (ES) cells from the inner cell mass or epiblast, trophoblast stem cells from the trophectoderm, and primitive endoderm stem cells. None of these stem cells is totipotent, because they show gene expression profiles characteristic of their sources and usually contribute only to the lineages of their origins in chimeric embryos. It is unknown whether embryos prior to the blastocyst stage can be cultivated towards totipotent stem cell cultures. Medaka is an excellent model for stem cell research. This laboratory fish has generated diploid and even haploid ES cells from the midblastula embryo with ~2000 cells. Here we report in medaka that dispersed cells from earlier embryos can survive, proliferate and attach in culture. We show that even 32-cells embryos can be dissociated into individual cells capable of producing continuously growing ES-like cultures. Our data point to the possibility to derive stable cell culture from cleavage embryos in this organism.


Subject(s)
Cell Culture Techniques , Cleavage Stage, Ovum/cytology , Embryonic Stem Cells/cytology , Oryzias/embryology , Animals , Cell Differentiation , Cell Lineage , Cell Proliferation , Embryo Culture Techniques , Phenotype , Totipotent Stem Cells/cytology
4.
Int J Biol Sci ; 7(4): 440-51, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21547061

ABSTRACT

Stem cell cultures can be derived directly from early developing embryos and indirectly from differentiated cells by forced expression of pluripotency transcription factors. Pluripotency genes are routinely used to characterize mammalian stem cell cultures at the molecular level. However, such genes have remained unknown in lower vertebrates. In this regard, the laboratory fish medaka is uniquely suited because it has embryonic stem (ES) cells and genome sequence data. We identified seven medaka pluripotency genes by homology search and expression in vivo and in vitro. By RT-PCR analysis, the seven genes fall into three groups of expression pattern. Group I includes nanog and oct4 showing gonad-specific expression; Group II contains sall4 and zfp281 displaying gonad-preferential expression; Group III has klf4, ronin and tcf3 exhibiting expression also in several somatic tissues apart from the gonads. The transcripts of the seven genes are maternally supplied and persist at a high level during early embryogenesis. We made use of early embryos and adult gonads to examine expression in stem cells and differentiated derivatives by in situ hybridization. Strikingly, nanog and oct4 are highly expressed in pluripotent blastomeres of 16-cell embryos. In the adult testis, nanog expression was specific to spermatogonia, the germ stem cells, whereas tcf3 expression occurred in spermatogonia and differentiated cells. Most importantly, all the seven genes are pluripotency markers in vitro, because they have high expression in undifferentiated ES cells but dramatic down-regulation upon differentiation. Therefore, these genes have conserved their pluripotency-specific expression in vitro from mammals to lower vertebrates.


Subject(s)
Fish Proteins/genetics , Oryzias/genetics , Pluripotent Stem Cells/physiology , Amino Acid Sequence , Animals , Biomarkers/metabolism , Blastomeres/metabolism , Cell Differentiation , Cells, Cultured , Embryo, Nonmammalian/metabolism , Embryonic Development/genetics , Female , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , In Situ Hybridization , Male , Molecular Sequence Data , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Oryzias/embryology , Oryzias/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment , Testis/metabolism , Transcription Factor 7-Like 1 Protein/genetics , Transcription Factor 7-Like 1 Protein/metabolism
5.
Sci China Life Sci ; 53(4): 426-34, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20596908

ABSTRACT

Stem cells are present in developing embryos and adult tissues of multicellular organisms. Owing to their unique features, stem cells provide excellent opportunities for experimental analyses of basic developmental processes such as pluripotency control and cell fate decision and for regenerative medicine by stem cell-based therapy. Stem cell cultures have been best studied in 3 vertebrate organisms. These are the mouse, human and a small laboratory fish called medaka. Specifically, medaka has given rise to the first embryonic stem (ES) cells besides the mouse, the first adult testis-derived male stem cells spermatogonia capable of test-tube sperm production, and most recently, even haploid ES cells capable of producing Holly, a semi-cloned fertile female medaka from a mosaic oocyte created by microinjecting a haploid ES cell nucleus directly into a normal oocyte. These breakthroughs make medaka a favoring vertebrate model for stem cell research, the topic of this review.


Subject(s)
Oryzias/embryology , Oryzias/genetics , Stem Cells/cytology , Adult Stem Cells , Animals , Cell Differentiation/genetics , Cells, Cultured , Cloning, Organism , Embryonic Stem Cells/cytology , Female , Models, Animal , Stem Cell Transplantation
SELECTION OF CITATIONS
SEARCH DETAIL
...