Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 414
Filter
1.
Opt Lett ; 49(11): 3074-3077, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824331

ABSTRACT

Light-emitting diode (LED)-optical communication is a novel spectrum communication with wide field of view (FOV), light weight, and long-distance free-space capabilities. Due to atmospheric turbulence attenuation and pointing errors caused by long-distance communication, this Letter proposes a multi-pixel channel joint maximum likelihood (JML) reception method using a highly sensitive silicon photomultiplier (SiPM). To evaluate the performance of the SiPM under mobile terminal jittering communication, we analyze the effect of optical transmitting power, pointing errors, and signal-to-noise ratio (SNR) gain on optical communication by comparing JML with signal channel using the maximum likelihood (ML) algorithm. Both simulation analysis and experimental results demonstrate that the proposed JML algorithm to process signals received from SiPM multi-pixel channels can effectively mitigate the impact of pointing errors on the bit error rate (BER) of optical communications by two orders of magnitude at large jitter radians and SNR.

2.
bioRxiv ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38853935

ABSTRACT

Background Pulmonary fibrosis (PF) is a rare lung disease with diverse pathogenesis and multiple interconnected underlying biological mechanisms. Mosaic loss of chromosome Y (mLOY) is one of the most common forms of acquired chromosome abnormality in men, which has been reported to be associated with increased risk of various chronic progressive diseases including fibrotic diseases. However, the exact role of mLOY in the development of PF remains elusive and to be elucidated. Methods: We adopted three complementary approaches to explore the role of mLOY in the pathogenesis of PF. We used copy number on chromosome Y to estimate mLOY comparing patients in PROFILE and gnomAD cohorts and between cases and control patients from the GE100KGP cohort. Correlation of mLOY with demographic and clinical variables was tested using patients from PROFILE cohort. Lung single-cell transcriptomic data were analysed to assess the cell types implicated in mLOY. We performed Mendelian randomisation to examine the causal relationship between mLOY, IPF, and telomere length. Results: The genetic analysis suggests that mLOY is found in PF from both case cohorts but when compared with an age matched population the effect is minimal (P = 0.0032). mLOY is related to age (P = 0.00021) and shorter telomere length (P = 0.0081) rather than PF severity or progression. Single-cell analysis indicates that mLOY appears to be found primarily in immune cells and appears to be related to presence and severity of fibrosis. Mendelian randomisation demonstrates that mLOY is not on the causal pathway for IPF, but partial evidence supports that telomere shortening is on the causal pathway for mLOY. Conclusion: Our study confirms the existence of mLOY in PF patients and suggests that mLOY is not a major driver of IPF. The combined evidence suggests a triangulation model where telomere shortening leads to both IPF and mLOY.

3.
Biol Trace Elem Res ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831176

ABSTRACT

Arsenic is an environmental pollutant that has garnered considerable attention from the World Health Organization. Liver fibrosis is an advanced pathological stage of liver injury that can be caused by chronic arsenic exposure and has the potential to be reversed to prevent cirrhosis and hepatic malignancies. However, effective treatment options are currently limited. Given the profibrogenic effect of hepatocyte senescence, we established a rat model of sub-chronic sodium arsenite exposure and investigated the ability of resveratrol (RSV), a potential anti-senescence agent, to ameliorate arsenic-induced liver fibrosis and elucidate the underlying mechanism from the perspective of hepatocyte senescence. The results demonstrated that RSV was capable of mitigating fibrosis phenotypes in rat livers, including the activation of hepatic stellate cell (HSC), the generation of extracellular matrix, and the deposition of collagen fibers in the liver vascular zone, which are all induced by arsenic exposure. Furthermore, as an activator of the longevity factor SIRT1, RSV antagonized the arsenic-induced inhibition of SIRT1 expression, thereby restoring the suppression of the senescence protein p16 by SIRT1. This prevented arsenic-induced hepatocyte senescence, manifesting as a decrease in telomere shortening and a reduction in the release of senescence-associated secretory phenotype (SASP)-related proteins. In conclusion, this study demonstrated that RSV counteracts arsenic-induced hepatocyte senescence and the release of SASP-related proteins by restoring the inhibitory effect of SIRT1 on p16, thereby suppressing the activation of fibrotic phenotypes and mitigating liver fibrosis. These findings provide new insights for understanding the mechanism of arsenic-induced liver fibrosis, and more importantly, they reveal novel potential interventional approaches.

4.
Environ Res ; 257: 119298, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823616

ABSTRACT

Antibiotic resistance poses a considerable global public health concern, leading to heightened rates of illness and mortality. However, the impact of seasonal variations and environmental factors on the health risks associated with antibiotic resistance genes (ARGs) and their assembly mechanisms is not fully understood. Based on metagenomic sequencing, this study investigated the antibiotic resistome, mobile genetic elements (MGEs), and microbiomes in a subtropical coastal ecosystem of the Beibu Gulf, China, over autumn and winter, and explored the factors influencing seasonal changes in ARG and MGE abundance and diversity. Results indicated that ARG abundance and diversity were higher in winter than in autumn, with beta-lactam and multidrug resistance genes being the most diverse and abundant, respectively. Similarly, MGE abundance and diversity increased in winter and were strongly correlated with ARGs. In contrast, more pronounced associations between microbial communities, especially archaea, and the antibiotic resistome were observed in autumn than in winter. The co-occurrence network identified multiple interactions between MGEs and various multidrug efflux pumps in winter, suggesting a potential for ARG dissemination. Multivariate correlation analyses and path modeling indicated that environmental factors driving microbial community changes predominantly influenced antibiotic resistome assembly in autumn, while the relative importance of MGEs increased significantly in winter. These findings suggest an elevated health risk associated with antimicrobial resistance in the Beibu Gulf during winter, attributed to the dissemination of ARGs by horizontal gene transfer. The observed seasonal variations highlight the dynamic nature of antibiotic resistance dissemination in coastal ecosystems, emphasizing the need for comprehensive surveillance and management measures to address the growing threat of antimicrobial resistance in vulnerable environments.

6.
FASEB J ; 38(10): e23639, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38742798

ABSTRACT

We tested the hypothesis that the biosensor capability of the endometrium is mediated in part, by the effect of different cargo contained in the extracellular vesicles secreted by the conceptus during the peri-implantation period of pregnancy. We transferred Bos taurus taurus embryos of different origin, in vivo (high developmental potential (IV)), in vitro (intermediate developmental potential (IVF)), or cloned (low developmental potential (NT)), into Bos taurus indicus recipients. Extracellular vesicles (EVs) recovered from Day 16 conceptus-conditioned medium were characterized and their microRNA (miRNA) cargo sequenced alongside RNA sequencing of their respective endometria. There were substantial differences in the endometrial response to in vivo versus in vitro and in vivo versus cloned conceptuses (1153 and 334DEGs respectively) with limited differences between in vitro Vs cloned conceptuses (36 DEGs). The miRNA cargo contained in conceptus-derived EVs was similar between all three groups (426 miRNA in common). Only 8 miRNAs were different between in vivo and cloned conceptuses, while only 6 miRNAs were different between in vivo and in vitro-derived conceptuses. Treatment of endometrial epithelial cells with mimic or inhibitors for miR-128 and miR-1298 changed the proteomic content of target cells (96 and 85, respectively) of which mRNAs are altered in the endometrium in vivo (PLXDC2, COPG1, HSPA12A, MCM5, TBL1XR1, and TTF). In conclusion, we have determined that the biosensor capability of the endometrium is mediated in part, by its response to different EVs miRNA cargo produced by the conceptus during the peri-implantation period of pregnancy.


Subject(s)
Endometrium , Extracellular Vesicles , MicroRNAs , Female , Endometrium/metabolism , Endometrium/cytology , Animals , Extracellular Vesicles/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Cattle , Pregnancy , Biosensing Techniques/methods , Embryo Implantation/physiology , Embryo, Mammalian/metabolism
7.
J Chem Phys ; 160(18)2024 May 14.
Article in English | MEDLINE | ID: mdl-38726940

ABSTRACT

The effects of the solution's dielectric properties on the conformation and dynamics of star-shaped polyelectrolytes in shear flow are investigated using a hybrid simulation method coupling multi-particle collision dynamics and molecular dynamics. The simulation results showed that by modulating the dielectric properties of the solution, star-shaped polyelectrolytes showed a three-step dynamic behavior transition from tumbling to tank-treading to tumbling dynamics under shear flow. The analysis indicated that this distinct transition in dynamics could be attributed to the uneven distribution of counterions induced by shear on the chain, resulting in a change in the polyelectrolyte conformation and degree of segmental alignment in arms. These findings contribute to a comprehensive understanding of the non-equilibrium dynamics of star-shaped polyelectrolytes in shear flow and offer a viable approach for controlling the dynamic behavior of star-shaped polyelectrolytes by adjusting the dielectric properties of the solution.

8.
Heliyon ; 10(7): e28493, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38586328

ABSTRACT

The risk prognosis model is a statistical model that uses a set of features to predict whether an individual will develop a specific disease or clinical outcome. It can be used in clinical practice to stratify disease severity and assess risk or prognosis. With the advancement of large-scale second-generation sequencing technology, along Prognosis models for osteosarcoma are increasingly being developed as large-scale second-generation sequencing technology advances and clinical and biological data becomes more abundant. This expansion greatly increases the number of prognostic models and candidate genes suitable for clinical use. This article will present the predictive effects and reliability of various prognosis models, serving as a reference for their evaluation and application.

9.
Food Environ Virol ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635140

ABSTRACT

There is growing evidence that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contaminates the marine environment and is bioaccumulated in filter-feeding shellfish. Previous study shows the Pacific oyster tissues can bioaccumulate the SARS-CoV-2, and the oyster heat shock protein 70 (oHSP70) may play as the primary attachment receptor to bind SARS-CoV-2's recombinant spike protein S1 subunit (rS1). However, detailed information about the interaction between rS1 and oHSP70 is still unknown. In this study, we confirmed that the affinity of recombinant oHSP70 (roHSP70) for rS1 (KD = 20.4 nM) is comparable to the receptor-binding affinity of rACE2 for rS1 (KD = 16.7 nM) by surface plasmon resonance (SPR)-based Biacore and further validated by enzyme-linked immunosorbent assay (ELISA). Three truncated proteins (roHSP70-N/C/M) and five mutated proteins (p.I229del, p.D457del, p.V491_K495del, p.K556I, and p.ΣroHSP70) were constructed according to the molecular docking results. All three truncated proteins have significantly lower affinity for rS1 than the full-length roHSP70, indicating that all three segments of roHSP70 are involved in binding to rS1. Further, the results of SPR and ELISA showed that all five mutant proteins had significantly lower affinity for rS1 than roHSP70, suggesting that amino acids at these sites are involved in binding to rS1. This study provides a preliminary theoretical basis for the bioaccumulation of SARS-CoV-2 in oyster tissues or using roHSP70 as the capture unit to selectively enrich virus particles for detection.

10.
ACS Sens ; 9(4): 2134-2140, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38626725

ABSTRACT

Imaging the surface charge of biomolecules such as proteins and DNA, is crucial for comprehending their structure and function. Unfortunately, current methods for label-free, sensitive, and rapid imaging of the surface charge of single DNA molecules are limited. Here, we propose a plasmonic microscopy strategy that utilizes charge-sensitive single-crystal monolayer WS2 materials to image the local charge density of a single λ-DNA molecule. Our study reveals that WS2 is a highly sensitive charge-sensitive material that can accurately measure the local charge density of λ-DNA with high spatial resolution and sensitivity. The consistency of the surface charge density values obtained from the single-crystal monolayer WS2 materials with theoretical simulations demonstrates the reliability of our approach. Our findings suggest that this class of materials has significant implications for the development of label-free, scanning-free, and rapid optical detection and charge imaging of biomolecules.


Subject(s)
DNA , DNA/chemistry , Tungsten Compounds/chemistry , Microscopy/methods
11.
PLoS One ; 19(4): e0301428, 2024.
Article in English | MEDLINE | ID: mdl-38625862

ABSTRACT

In urban areas with limited underground space, the new tunnel construction introduces additional loads and displacements to existing tunnels, raising serious safety concerns. These concerns become particularly pronounced in the case of closely undercrossing excavation at zero-distance. The conventional elastic foundation beam model, which assumes constant reaction coefficients for the subgrade, fails to account for foundation loss. In this study, the existing tunnel is modeled as an Euler-Bernoulli beam supported by the Pasternak elastic foundation, and the foundation loss caused by zero-distance undercrossing excavations is considered. Furthermore, an analytical solution is proposed to evaluate the mechanical response in segments, by establishing governing differential equations and boundary conditions for the excavation and neutral zones, and underpinning loads are also considered. The analytical solution is validated in two case studies. Finally, a parametric analysis is performed to explore the influence of various parameters on the mechanical response of the existing tunnel.

12.
Food Funct ; 15(10): 5429-5438, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38644728

ABSTRACT

Antibiotics are unavoidable to be prescribed to subjects due to different reasons, and they decrease the relative abundance of beneficial microbes. Inulin, a fructan type of polysaccharide carbohydrate, on the contrary, could promote the growth of beneficial microbes. In this study, we investigated the effect of inulin on antibiotic-induced intestinal microbiota dysbiosis and compared their overall impact at different supplementation stages, i.e., post-antibiotic, at the time of antibiotic administration or prior to antibiotic treatment, in the C57BL/6 mice model. Although supplementation of inulin after antibiotic treatment could aid in the reconstruction of the intestinal microbial community its overall impact was limited and no remarkable differences were identified as compared to the spontaneous restoration. On the contrary, the effect of simultaneous and pre-supplementation was more remarkable. Simultaneous inulin supplementation significantly mitigated the antibiotic-induced dysbiosis based on alterations as evaluated using weighted and unweighted UniFrac distance between baseline and after treatment. Moreover, comparing the effect of simultaneous supplementation, pre-supplemented inulin further mitigated the antibiotic-induced dysbiosis, especially on the relative abundance of dominant microbes. Collectively, the current study found that the use of inulin could alleviate antibiotic-induced microbiota dysbiosis, and the best supplementation stage (overall effect as evaluated by beta diversity distance changes) was before the antibiotic treatment, then simultaneous supplementation and supplementation after the antibiotic treatment.


Subject(s)
Anti-Bacterial Agents , Dysbiosis , Gastrointestinal Microbiome , Inulin , Mice, Inbred C57BL , Inulin/pharmacology , Animals , Dysbiosis/microbiology , Dysbiosis/drug therapy , Dysbiosis/chemically induced , Gastrointestinal Microbiome/drug effects , Mice , Anti-Bacterial Agents/pharmacology , Male , Dietary Supplements , Bacteria/classification , Bacteria/drug effects , Bacteria/isolation & purification
13.
Ecotoxicol Environ Saf ; 275: 116282, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38564859

ABSTRACT

The metalloid arsenic, known for its toxic properties, is widespread presence in the environment. Our previous research has confirmed that prolonged exposure to arsenic can lead to liver fibrosis injury in rats, while the precise pathogenic mechanism still requires further investigation. In the past few years, the Nod-like receptor protein 3 (NLRP3) inflammasome has been found to play a pivotal role in the occurrence and development of liver injury. In this study, we administered varying doses of sodium arsenite (NaAsO2) and 10 mg/kg.bw MCC950 (a particular tiny molecular inhibitor targeting NLRP3) to Sprague-Dawley (SD) rats for 36 weeks to explore the involvement of NLRP3 inflammasome in NaAsO2-induced liver injury. The findings suggested that prolonged exposure to NaAsO2 resulted in pyroptosis in liver tissue of SD rats, accompanied by the fibrotic injury, extracellular matrix (ECM) deposition and liver dysfunction. Moreover, long-term NaAsO2 exposure activated NLRP3 inflammasome, leading to the release of pro-inflammatory cytokines in liver tissue. After treatment with MCC950, the induction of NLRP3-mediated pyroptosis and release of pro-inflammatory cytokines were significantly attenuated, leading to a decrease in the severity of liver fibrosis and an improvement in liver function. To summarize, those results clearly indicate that hepatic fibrosis and liver dysfunction induced by NaAsO2 occur through the activation of NLRP3 inflammasome-mediated pyroptosis, shedding new light on the potential mechanisms underlying arsenic-induced liver damage.


Subject(s)
Arsenic , Liver Diseases , Rats , Animals , Inflammasomes/metabolism , Rats, Sprague-Dawley , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins , Pyroptosis , Disease Models, Animal , Fibrosis , Liver Cirrhosis/chemically induced , Sulfonamides/pharmacology , Cytokines/metabolism
14.
Front Immunol ; 15: 1374506, 2024.
Article in English | MEDLINE | ID: mdl-38529271

ABSTRACT

Pulmonary hypertension (PH) is a malignant disease with progressive increase of pulmonary vascular pressure, which eventually leads to right heart failure. More and more evidences show that immune cells and inflammation play an important role in the occurrence and development of PH. In the context of pulmonary vascular diseases, immune cells migrate into the walls of the pulmonary vascular system. This leads to an increase in the levels of cytokines and chemokines in both the bloodstream and the surrounding tissues of the pulmonary vessels. As a result, new approaches such as immunotherapy and anti-inflammatory treatments are being considered as potential strategies to halt or potentially reverse the progression of PH. We reviewed the potential mechanisms of immune cells, cytokines and chemokines in PH development. The potential relationship of vascular cells or bone morphogenetic protein receptor 2 (BMPR2) in immune regulation was also expounded. The clinical application and future prospect of immunotherapy were further discussed.


Subject(s)
Hypertension, Pulmonary , Humans , Hypertension, Pulmonary/therapy , Hypertension, Pulmonary/metabolism , Lung/pathology , Inflammation/metabolism , Cytokines/metabolism , Chemokines/metabolism
15.
Arch Toxicol ; 98(5): 1399-1413, 2024 May.
Article in English | MEDLINE | ID: mdl-38460002

ABSTRACT

Pulmonary fibrosis involves destruction of the lung parenchyma and extracellular matrix deposition. Effective treatments for pulmonary fibrosis are lacking and its pathogenesis is still unclear. Studies have found that epithelial-mesenchymal transition (EMT) of alveolar epithelial cells (AECs) plays an important role in progression of pulmonary fibrosis. Thus, an in-depth exploration of its mechanism might identify new therapeutic targets. In this study, we revealed that a novel circular RNA, MKLN1 (circMKLN1), was significantly elevated in two pulmonary fibrosis models (intraperitoneally with PQ, 50 mg/kg for 7 days, and intratracheally with BLM, 5 mg/kg for 28 days). Additionally, circMKLN1 was positively correlated with the severity of pulmonary fibrosis. Inhibition of circMKLN1 expression significantly reduced collagen deposition and inhibited EMT in AECs. EMT was aggravated after circMKLN1 overexpression in AECs. MiR-26a-5p/miR-26b-5p (miR-26a/b), the targets of circMKLN1, were confirmed by luciferase reporter assays. CircMKLN1 inhibition elevated miR-26a/b expression. Significantly decreased expression of CDK8 (one of the miR-26a/b targets) was observed after inhibition of circMKLN1. EMT was exacerbated again, and CDK8 expression was significantly increased after circMKLN1 inhibition and cotransfection of miR-26a/b inhibitors in AECs. Our research indicated that circMKLN1 promoted CDK8 expression through sponge adsorption of miR-26a/b, which regulates EMT and pulmonary fibrosis. This study provides a theoretical basis for finding new targets or biomarkers in pulmonary fibrosis.


Subject(s)
MicroRNAs , Pulmonary Fibrosis , Humans , Mice , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , Alveolar Epithelial Cells , Epithelial-Mesenchymal Transition/genetics , Cyclin-Dependent Kinase 8/metabolism , Cell Adhesion Molecules/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism
16.
Mol Nutr Food Res ; 68(7): e2400033, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38483096

ABSTRACT

SCOPE: Consumption of inulin could affect the intestinal microbiota composition. Hereby, it is aimed to investigate the intestinal microbial community restoration process when the inulin supplementation is terminated (i.e., the secondary effect). METHODS AND RESULTS: The current study investigates the response and restoration of intestinal microbiota to/after high (Inulin-H) and low (Inulin-L) dosage of inulin supplementation or sequential antibiotics and inulin (Anti-Inulin-L) supplementation, based on analysis of 16S rRNA gene sequences in C57BL/6 mice. The number of significantly changed genera in response to inulin is highest in Anti-Inulin-L (n = 66) group, followed by Inulin-H (n = 51) and Inulin-L (n = 38) group. After inulin supplementation stops, microbiota of all studied groups tend to recover to their original states, with highest percentage of inulin-responding microbes stay significantly different at Anti-Inulin-L (93.94%) group, followed by Inulin-H (74.51%) and Inulin-L (44.12%) groups. Of note, the relative abundance of some non-inulin-responding taxa significantly increases during restoration. CONCLUSION: Sequential antibiotics and inulin supplementation induce greatest changes in the intestinal microbial composition, followed by high and low dosage of inulin. Additionally, the changes induce by supplemented inulin in the intestinal microbial community, provide a chance for some microbes to outcompete the other microbes during the spontaneous restoration.


Subject(s)
Gastrointestinal Microbiome , Inulin , Mice , Animals , Inulin/pharmacology , RNA, Ribosomal, 16S/genetics , Mice, Inbred C57BL , Dietary Supplements , Anti-Bacterial Agents/pharmacology
17.
Cancers (Basel) ; 16(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38398117

ABSTRACT

Several subtypes of pituitary neuroendocrine tumors (PitNETs), such as acromegaly and Cushing's disease, can result in hypertension. However, whether prolactinoma is associated with this complication remains unknown. Moreover, the effect of treatment with surgery or drugs on blood pressure (BP) is unknown. Herein, a retrospective study reviewed 162 patients with prolactinoma who underwent transsphenoidal surgery between January 2005 and December 2022. BP measurements were performed 1 day before and 5 days after surgery. Accordingly, patients' medical characteristics were recorded. In addition, in situ rat and xenograft nude-mice prolactinoma models have been used to mimic prolactinoma. In vivo BP and serum prolactin (PRL) levels were measured after cabergoline (CAB) administration in both rats and mice. Our data suggest that surgery can effectively decrease BP in prolactinoma patients with or without hypertension. The BP-lowering effect was significantly associated with several variables, including age, sex, disease duration, tumor size, invasion, dopamine agonists (DAs)-resistance, recurrence, and preoperative PRL levels. Moreover, in situ and xenograft prolactinomas induced BP elevation, which was alleviated by CAB treatment without and with a statistical difference in rats and mice, respectively. Thus, surgery or CAB can decrease BP in prolactinoma, indicating that pre- and postoperative BP management becomes essential.

18.
Inflammation ; 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38401021

ABSTRACT

Chronic cerebral ischemia is a complex form of stress, of which the most common hemodynamic characteristic is chronic cerebral hypoperfusion (CCH). Lasting endoplasmic reticulum (ER) stress can drive neurological disorders. Targeting ER stress shows potential neuroprotective effects against stroke. However, the role of ER stress in CCH pathological processes and the effects of targeting ER stress on brain ischemia are unclear. Here, a CCH rat model was established by bilateral common carotid artery occlusion. Rats were treated with 4-PBA, URB597, or both for 4 weeks. Neuronal morphological damage was detected using hematoxylin-eosin staining. The expression levels of the ER stress-ASK1 cascade-related proteins GRP78, IRE1α, TRAF2, CHOP, Caspase-12, ASK1, p-ASK1, JNK, and p-JNK were assessed by Western blot. The mRNA levels of TNF-α, IL-1ß, and iNOS were assessed by RT-PCR. For oxygen-glucose deprivation experiments, mouse hippocampal HT22 neurons were used. Apoptosis of the hippocampus and HT22 cells was detected by TUNEL staining and Annexin V-FITC analysis, respectively. CCH evoked ER stress with increased expression of GRP78, IRE1α, TRAF2, CHOP, and Caspase-12. Co-immunoprecipitation experiments confirmed the interaction between TRAF2 and ASK1. ASK1/JNK signaling, inflammatory cytokines, and neuronal apoptosis were enhanced, accompanied by persistent ER stress; these were reversed by 4-PBA and URB597. Furthermore, the ASK1 inhibitor GS4997 and 4-PBA displayed synergistic anti-apoptotic effects in cells with oxygen-glucose deprivation. In summary, ER stress-induced apoptosis in CCH is associated with the IRE1α/TRAF2/ASK1/JNK signaling pathway. Targeting the ER stress-ASK1 cascade could be a novel therapeutic approach for ischemic cerebrovascular diseases.

19.
PLoS One ; 19(2): e0299113, 2024.
Article in English | MEDLINE | ID: mdl-38422029

ABSTRACT

Saline-alkali soil significantly impairs crop growth. This research employs the impacts of the modifier and water-soluble fertilizer, as well as their interaction, on the root systems of alfalfa and leymus chinensis in saline-alkali soil. The results exhibit that the hydrochar source modifier effectively enhances the root growth of both forage species. There are certain improvements in the root growth indicators of both crops at a dosage of 20 g/kg. Root enzyme activity and rhizosphere soil enzyme activity are enhanced in alfalfa, showing significant improvements in the first planting compared to the second planting. The application of water-soluble fertilizers also promotes root growth and root dehydrogenase activity. The root dehydrogenase activity of alfalfa and leymus chinensis are enhanced 62.18% and 10.15% in first planting than that of blank, respectively. Additionally, the two-factor variance analysis revealed a correlation between rhizosphere soil enzyme activity and changes in root traits. Higher rhizosphere soil enzyme activity is observed in conjunction with better root growth. The combined application of a modifier and water-soluble fertilizer has demonstrated a significant interaction effect on various aspects of the first planting of alfalfa and leymus chinensis. Moreover, the combined application of the modifier and water-soluble fertilizer has yielded superior results when compared to the individual application of either the modifier or the water-soluble fertilizer alone. This combined approach has proven effective in improving saline-alkali soil conditions and promoting crop growth in such challenging environments.


Subject(s)
Alkalies , Fertilizers , Heavy Metal Poisoning , Medicago sativa , Poaceae , Saline Solution , Soil , Water , Oxidoreductases
20.
J Hazard Mater ; 465: 133405, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38185084

ABSTRACT

Exposure to arsenic during gestation has lasting health-related effects on the developing fetus, including an increase in the risk of metabolic disease later in life. Epigenetics is a potential mechanism involved in this process. Ten-eleven translocation 2 (TET2) has been widely considered as a transferase of 5-hydroxymethylcytosine (5hmC). Here, mice were exposed, via drinking water, to arsenic or arsenic combined with ascorbic acid (AA) during gestation. For adult offspring, intrauterine arsenic exposure exhibited disorders of glucose metabolism, which are associated with DNA hydroxymethylation reprogramming of hepatic nuclear factor 4 alpha (HNF4α). Further molecular structure analysis, by SEC-UV-DAD, SEC-ICP-MS, verified that arsenic binds to the cysteine domain of TET2. Mechanistically, arsenic reduces the stability of TET2 by binding to it, resulting in the decrease of 5hmC levels in Hnf4α and subsequently inhibiting its expression. This leads to the disorders of expression of its downstream key glucose metabolism genes. Supplementation with AA blocked the reduction of TET2 and normalized the 5hmC levels of Hnf4α, thus alleviating the glucose metabolism disorders. Our study provides targets and methods for the prevention of offspring glucose metabolism abnormalities caused by intrauterine arsenic exposure.


Subject(s)
Arsenic , Ascorbic Acid , Dioxygenases , Glucose Metabolism Disorders , Animals , Mice , Arsenic/toxicity , Ascorbic Acid/therapeutic use , Dioxygenases/metabolism , DNA , DNA Methylation , DNA-Binding Proteins , Glucose/metabolism , Glucose Metabolism Disorders/chemically induced , Glucose Metabolism Disorders/genetics , Glucose Metabolism Disorders/metabolism , Liver/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...