Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
2.
Front Endocrinol (Lausanne) ; 13: 813320, 2022.
Article in English | MEDLINE | ID: mdl-35242110

ABSTRACT

Gonadal somatic cell-derived factor (Gsdf) is a member of the TGF-ß superfamily, which exists mainly in fishes. Homozygous gsdf mutations in Japanese medaka and zebrafish resulted in infertile females, and the reasons for their infertility remain unknown. This study presents functional studies of Gsdf in ovary development using CRISPR/Cas9 in Nile tilapia (Oreochromis niloticus). The XX wild type (WT) female fish regularly reproduced from 12 months after hatching (mah), while the XX gsdf-/- female fish never reproduced and were infertile. Histological observation showed that at 24 mah, number of phase IV oocyte in the XX gsdf-/- female fish was significantly lower than that of the WT fish, although their gonadosomatic index (GSI) was similar. However, the GSI of the XX gsdf-/- female at 6 mah was higher than that of the WT. The mutated ovaries were hyperplastic with more phase I oocytes. Transcriptome analysis identified 344 and 51 up- and down-regulated genes in mutants compared with the WT ovaries at 6 mah. Some TGF-ß signaling genes that are critical for ovary development in fish were differentially expressed. Genes such as amh and amhr2 were up-regulated, while inhbb and acvr2a were down-regulated in mutant ovaries. The cyp19a1a, the key gene for estrogen synthesis, was not differentially expressed. Moreover, the serum 17ß-estradiol (E2) concentrations between XX gsdf-/- and WT were similar at 6 and 24 mah. Results from real-time PCR and immunofluorescence experiments were similar and validated the transcriptome data. Furthermore, Yeast-two-hybrid assays showed that Gsdf interacts with TGF-ß type II receptors (Amhr2 and Bmpr2a). Altogether, these results suggest that Gsdf functions together with TGF-ß signaling pathway to control ovary development and fertility. This study contributes to knowledge on the function of Gsdf in fish oogenesis.


Subject(s)
Cichlids , Infertility , Animals , Bone Morphogenetic Protein Receptors, Type II/genetics , Bone Morphogenetic Protein Receptors, Type II/metabolism , Cichlids/metabolism , Female , Mutation , Transforming Growth Factor beta/genetics , Zebrafish , Zebrafish Proteins/metabolism
3.
J Fish Dis ; 45(3): 451-459, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34962648

ABSTRACT

Outbreaks of viral encephalopathy and retinopathy (VER) in marine and freshwater species severely devastate the aquaculture worldwide. The causative agent of VER is nervous necrosis virus (NNV), which mainly infects the early developmental stages of fish, limiting the effectiveness of vaccines. To counter this case, the anti-NNV potentials of nine drugs with broad-spectrum antiviral activity were explored using ribavirin as a positive drug. Toxicity of the selected drugs to SSN-1 cells and grouper was firstly evaluated to determine the safety concentrations. For screening in vitro, amantadine and oseltamivir phosphate can relieve the cytopathic effects and inhibit NNV replication with the 90% inhibitory concentrations (IC90 ) of 38.74 and 106.75 mg/L, respectively. Amantadine has a stronger anti-NNV activity than ribavirin at the with- and post-NNV infection stages, indicating that it is a potential therapeutic agent against VER by acting directly on NNV. Similarly, amantadine also has a strong anti-NNV activity in vivo with the IC90 of 27.91 mg/L at the 7 days post-infection, while that was 73.25 mg/L for ribavirin. Following exposure to amantadine (40 mg/L) and ribavirin (100 mg/L) for 7 days, the survival rates of NNV-infected grouper were increased to 44% and 39%, respectively. The maximum amantadine content (11.88 mg/Kg) in grouper brain was reached following exposure for 24 hr, and amantadine can be quickly excreted from fish, reducing the risk of drug residue. Results so far indicated that amantadine is a promising therapeutic agent against NNV in aquaculture, providing an effective strategy for VER control at the early developmental stages of fish.


Subject(s)
Brain Diseases , Fish Diseases , Nodaviridae , RNA Virus Infections , Retinal Diseases , Amantadine/pharmacology , Amantadine/therapeutic use , Animals , Fish Diseases/drug therapy , Retinal Diseases/drug therapy , Retinal Diseases/veterinary
4.
Article in English | MEDLINE | ID: mdl-31465879

ABSTRACT

The ATF/CREB family of transcription factors represents a large group of basic region-leucine zipper (bZip) proteins that regulate diverse cellular responses. Here we carried out a comprehensive analysis of ATF/CREB family members in 22 representative animal species. The family probably originated from the early diverging metazoan and significantly expanded in vertebrates due to multiple whole genome duplication. Duplicates of atf6 were derived from 2R, and duplicates of creb1, crem, jdp2, creb5, atf4, atf5 and atf7 were products of 3R. We also isolated 21 ATF/CREBs, belonging to 6 subfamilies from Nile tilapia. Based on transcriptome data, most members were found to be dominantly expressed in the head kidney, heart, brain and testis. Some ATF/CREBs displayed sexual dimorphic expression in gonad at 5, 90 and 180 dah (days after hatching), but not at 30 dah. creb1a and atf4a were found to be expressed mainly in phase I and II oocytes of the ovary; while creb1b and atf4b mainly in spermatogenic cells of the testis, indicating divergence of duplicated genes from 3R which suggested neofunctionalization or subfunctionalization in gonad. This is the first genome-wide screening and evolutionary analysis of ATF/CREB family in different animals, particularly in teleosts. The expression analysis of this family in tilapia gonad provided a fundamental clue for understanding their important roles in sex differentiation and gonadal development in teleosts.


Subject(s)
Activating Transcription Factors/metabolism , CREB-Binding Protein/metabolism , Cichlids/metabolism , Evolution, Molecular , Gonads/metabolism , Activating Transcription Factors/genetics , Animals , CREB-Binding Protein/genetics , Cichlids/genetics , Female , Gene Expression Profiling , Male , Ovary/metabolism , Testis/metabolism
5.
Gen Comp Endocrinol ; 277: 82-89, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30902611

ABSTRACT

In this experiment, Genetically improved farmed Nile tilapia Oreochromis niloticus were intraperitoneally injected with 1 g glucose/kg of body weight or saline. Red and white muscle tissues were collected at 0, 1, 2, 4, 6 and 12 h after the glucose tolerance test (GTT) or saline injection, and the time course of changes in molecular and metabolic adaption of glucose metabolism of these two tissues were evaluated. The results showed that the expression of insulin-responsive glucose transporter 4 (glut4) was up-regulated at 4 h after the GTT in the red muscle, implying an increase of glucose uptake. However, the expression of glut4 in the white muscle did not change with glucose load. The glycolysis of red muscle in tilapia was stimulated during 2-4 h after the GTT, as the expression of hexokinase 1b (hk1b), hk2, phosphofructokinase muscle type a (pfkma) and pfkmb and the activity of HK and PFK increased. By contrast, only the expression of hk1b was up-regulated at 6 h after the GTT in the white muscle. The mRNA level of glycogen synthase 1 (gys1) and glycogen content increased at 2 and 6 h, respectively after the GTT in the red muscle, suggesting that glucose storage was provoked. However, glycogen content in the white muscle was not impacted by GTT. Lipogenesis was stimulated in the red muscle as reflected by up-regulated expression of acetyl-CoA carboxylase α (accα) (during 2-4 h) and accß (during 4-12 h) with GTT. In the white muscle, however, the expression of accα was not changed, and mRNA level of accß was not up-regulated until 6 h after the GTT. Taken together, it was concluded that the glycolytic and glycogen synthesis mechanisms in the red muscle were highly regulated by an acute glucose load while those in the white muscle were less responsive to this stimulus.


Subject(s)
Adaptation, Physiological , Cichlids/metabolism , Glucose/metabolism , Muscles/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Animals , Animals, Genetically Modified , Cichlids/genetics , Glucose Tolerance Test , Glycogen/metabolism , Glycogen Synthase/metabolism , Hexokinase/genetics , Hexokinase/metabolism , Male , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Phosphofructokinases/metabolism
6.
Article in English | MEDLINE | ID: mdl-30170023

ABSTRACT

DNA methyltransferases (dnmts) are responsible for DNA methylation and play important roles in organism development. In this study, seven dnmts genes (dnmt1, dnmt2, dnmt3aa, dnmt3ab, dnmt3ba, dnmt3bb.1, dnmt3bb.2) were identified in Nile tilapia. Comprehensive analyses of dnmts were performed using available genome databases from representative animal species. Phylogenetic analysis revealed that the dnmts family were highly conserved in teleosts. Based on transcriptome data from eight adult tilapia tissues, the dnmts were found to be dominantly expressed in the head kidney, testis and ovary. Analyses of the gonadal transcriptome data in different developmental stages revealed that all dnmts were expressed in both ovary and testis, and four de novo dnmts (dnmt3aa, dnmt3ab, dnmt3bb.1, dnmt3bb.2) showed higher expression in the testis than in the ovary. Furthermore, during sex reversal induced by Fadrozole, the expression of these four de novo dnmts increased significantly in treated group compared to female control group. By in situ hybridization, the seven dnmts were found to be expressed mainly in phase I and II oocytes of the ovary and spermatocytes of the testis. When gonads were incubated with a methyltransferase inhibitor (5-AzaCdR) in vitro, the expression of dnmts genes were down-regulated significantly, while the expression of cyp19a1a (a key gene in female pathway) and dmrt1 (a key gene in male pathway) increased significantly. Our results revealed the conservation of dnmts during evolution and indicated a potential role of dnmts in epigenetic regulation of gonadal development.


Subject(s)
DNA Methylation , DNA Modification Methylases/metabolism , Fish Proteins/metabolism , Gene Expression Regulation, Developmental , Ovary/metabolism , Testis/metabolism , Tilapia/physiology , Amino Acid Sequence , Animals , Conserved Sequence , DNA Methylation/drug effects , DNA Modification Methylases/antagonists & inhibitors , DNA Modification Methylases/chemistry , DNA Modification Methylases/genetics , Databases, Genetic , Enzyme Inhibitors/pharmacology , Epigenesis, Genetic/drug effects , Evolution, Molecular , Female , Fish Proteins/antagonists & inhibitors , Fish Proteins/chemistry , Fish Proteins/genetics , Gene Expression Regulation, Developmental/drug effects , Genomics/methods , Gonadal Dysgenesis/chemically induced , Gonadal Dysgenesis/metabolism , Gonadal Dysgenesis/pathology , Isoenzymes/antagonists & inhibitors , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Male , Organ Specificity , Ovary/cytology , Ovary/drug effects , Ovary/growth & development , Phylogeny , Testis/cytology , Testis/drug effects , Testis/growth & development , Tilapia/genetics , Tilapia/growth & development , Tissue Culture Techniques/veterinary
7.
Article in English | MEDLINE | ID: mdl-28743461

ABSTRACT

The H (hypothalamic)-P (pituitary)-I (interrenal) axis is critical in the stress response and other activities of fish. To further investigate cadmium (Cd) toxicity on the H-P-I axis and to identify its potential regulatory genes in fish, the adult female rare minnows (Gobiocypris rarus) were exposed to subchronic (5weeks) levels of waterborne Cd in the present study. This kind of treatment caused dose-dependent decline in fish growth, with significance in the high dose group (100µg/L). Correspondingly, low dose (5-50µg/L) waterborne Cd disrupted the endocrine system of H-P-I axis just at the secretion level, while high dose Cd disrupted both the secretion and synthesis of cortisol and its downstream signals in rare minnows, revealed by the significantly upregulation and positive correlation of corticosteroidogenic genes including MC2R, StAR, CYP11A1, and CYP11B1 in the kidney (including the interrenal tissue) (P<0.05), and the significant alteration of Glcci1, Hsp90AA and Hsp90AB in the hepatopancreas, gill and intestine as well (P<0.05). The expression of Glcci1 was significantly decreased in hepatopancreas, gill and intestine of tested fish following treatment, and its positive correlation with GR (Glucocorticoid receptor) suggested its potential regulation on the cortisol and/or H-P-I axis in fish. The expression of FKBP5 in the intestine was positively and significantly correlated with that of Hsp90AA (P<0.05), and the Hsp90AB transcript in the hepatopancreas was positively correlated with that of Hsp90AA (P<0.05), which indicated that Hsp90AA and Hsp90AB were more likely to serve as cofactors of GR and FKBP5 in response to Cd exposure.


Subject(s)
Cadmium Chloride/toxicity , Cyprinidae/physiology , Hypothalamo-Hypophyseal System/drug effects , Interrenal Gland/drug effects , Adrenocorticotropic Hormone/genetics , Adrenocorticotropic Hormone/metabolism , Animals , Cadmium Chloride/administration & dosage , Corticotropin-Releasing Hormone/genetics , Corticotropin-Releasing Hormone/metabolism , Drug Administration Schedule , Female , Gene Expression Regulation/drug effects , Hydrocortisone/genetics , Hydrocortisone/metabolism , Hypothalamo-Hypophyseal System/physiology , Interrenal Gland/physiology , Melanocyte-Stimulating Hormones/genetics , Melanocyte-Stimulating Hormones/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism , Water Pollutants, Chemical/toxicity
8.
Biol Open ; 6(6): 818-824, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28619994

ABSTRACT

The present study was performed to investigate the roles of anterior intestine in the postprandial glucose homeostasis of the omnivorous Genetically Improved Farmed Tilapia (GIFT). Sub-adult fish (about 173 g) were sampled at 0, 1, 3, 8 and 24 h post feeding (HPF) after 36 h of food deprivation, and the time course of changes in intestinal glucose transport, glycolysis, glycogenesis and gluconeogenesis at the transcription and enzyme activity level, as well as plasma glucose contents, were analyzed. Compared with 0 HPF (fasting for 36 h), the mRNA levels of both ATP-dependent sodium/glucose cotransporter 1 and facilitated glucose transporter 2 increased during 1-3 HPF, decreased at 8 HPF and then leveled off. These results indicated that intestinal uptake of glucose and its transport across the intestine to blood mainly occurred during 1-3 HPF, which subsequently resulted in the increase of plasma glucose level at the same time. Intestinal glycolysis was stimulated during 1-3 HPF, while glucose storage as glycogen was induced during 3-8 HPF. Unexpectedly, intestinal gluconeogenesis (IGNG) was also strongly induced during 1-3 HPF at the state of nutrient assimilation. The mRNA abundance and enzyme activities of glutamic-pyruvic and glutamic-oxaloacetic transaminases increased during 1-3 HPF, suggesting that the precursors of IGNG might originate from some amino acids. Taken together, it was concluded that the anterior intestine played an important role in the regulation of postprandial glucose homeostasis in omnivorous tilapia, as it represented significant glycolytic potential and glucose storage. It was interesting that postprandial IGNG was stimulated by feeding temporarily, and its biological significance remains to be elucidated in fish.

9.
Article in English | MEDLINE | ID: mdl-27614332

ABSTRACT

Chromobox (Cbx) family proteins are transcriptional repressors that involved in epigenetic and developmental processes. In this study, comprehensive analyses of Cbxs were performed using available genome databases from representative animal species. The Cbx family were originated from one Polycomb (Pc) gene like the yeast Pc, which duplicated into two and gave rise to the Pc and the Heterochromatin protein 1 (Hp1) identified in invertebrates from protozoon to lancelet. Rapid expansion of Cbx family members was observed in vertebrates as ~8 (5 Pc and 3 Hp1) were identified in spotted gar, coelacanth and tetrapods. Further expansion of the members to ~14 (9 Pc and 5 Hp1) was observed in teleosts due to the third round genome duplication (3R). Based on transcriptome data from eight adult tilapia tissues, most of the Cbxs were found to be dominantly expressed in the brain, testis, ovary and heart. Analyses of the gonadal transcriptome data from four developmental stages revealed that all Cbxs were expressed in both ovary and testis except Cbx7b, with significant increase of the total and average RPKM from 5 to 90dah (days after hatching). By in situ hybridization, the three most highly and sexual dimorphically expressed Cbx genes in gonads, Cbx1b, Cbx3a and Cbx5, were found to be expressed in phase I and II oocytes of the ovary, and in secondary spermatocytes (Cbx1b and Cbx3a) and spermatids (Cbx5) of the testis. Our results revealed the evolution of Cbx genes and indicated a potential role of Cbxs in epigenetic regulation of gametogenesis.


Subject(s)
Cichlids/genetics , Evolution, Molecular , Fish Proteins/genetics , Genomics , Polycomb Repressive Complex 1/genetics , Animals , Gene Expression Profiling , Phylogeny
10.
Endocrinology ; 157(6): 2500-14, 2016 06.
Article in English | MEDLINE | ID: mdl-27046435

ABSTRACT

Steroidogenic factor-1 (Sf-1) (officially designated nuclear receptor subfamily 5 group A member 1 [NR5A1]) is a master regulator of steroidogenesis and reproduction in mammals. However, its function remains unclear in nonmammalian vertebrates. In the present study, we used immunohistochemistry to detect expression of Sf-1 in the steroidogenic cells, the interstitial, granulosa, and theca cells of the ovary, and the Leydig cells of the testis, in Nile tilapia. Clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (Cas9) cleavage of sf-1 resulted in a high mutation rate in the F0 generation and a phenotype of gonadal dysgenesis and reduced steroidogenic cells in XX and XY fish. Sf-1 deficiency also resulted in decreased cytochrome P450, family 19, subfamily A, polypeptide 1a, forkhead box L2 expression, and serum estradiol-17ß in XX fish. In XY fish, Sf-1 deficiency increased cytochrome P450, family 19, subfamily A, polypeptide 1a and forkhead box L2 expression but decreased cytochrome P450, family 11, subfamily B, polypeptide 2 expression and serum 11-ketotestosterone levels. 17α-methyltestosterone treatment successfully rescued the gonadal phenotype of Sf-1-deficient XY fish, as demonstrated by normal spermatogenesis and production of F1 mutants. In contrast, estradiol-17ß treatment only partially rescued the gonadal phenotype of Sf-1-deficient XX fish, as demonstrated by the appearance of phase II oocytes. Furthermore, both sf-1(+/-) F1 XX and XY mutants developed as fertile males, although spermatogenesis was delayed and efferent duct formation was disordered. Our data suggest that Sf-1 is a major regulator of steroidogenesis and reproduction in fish, as it is in mammals. Sf-1 deficiency resulted in gonadal dysgenesis and feminization of XY gonads. However, unlike in mammals, Sf-1 deficiency also resulted in female to male sex reversal in 8.1% of F0 and 92.1% of sf-1(+/-) F1 in XX fish.


Subject(s)
Cichlids/metabolism , Cichlids/physiology , Fish Proteins/metabolism , Haploinsufficiency/physiology , Steroidogenic Factor 1/metabolism , Animals , Aromatase/genetics , Aromatase/metabolism , Estradiol/pharmacology , Female , Fish Proteins/genetics , Gene Expression Regulation, Developmental/drug effects , Haploinsufficiency/genetics , Male , Methyltestosterone/pharmacology , Sex Differentiation/drug effects , Spermatogenesis/drug effects , Steroidogenic Factor 1/genetics , Testosterone/analogs & derivatives , Testosterone/blood
11.
Mol Reprod Dev ; 83(6): 497-508, 2016 06.
Article in English | MEDLINE | ID: mdl-27027772

ABSTRACT

Gonadal soma-derived factor (gsdf) is critical for testicular differentiation in teleosts, yet detailed analysis of Gsdf on testicular differentiation is lacking. In the present study, we knocked out tilapia gsdf using CRISPR/Cas9. F0 gsdf-deficient XY fish with high mutation rate (≥58%) developed as intersex, with ovotestes 90 days after hatching (dah), and become completely sex-reversed with ovaries at 180 and 240 dah. Those individuals with a low mutation rate (<58%) and XY gsdf(+/-) fish developed as males with normal testes. In F2 XY gsdf(-/-) fish, the gonads first expressed Dmrt1, which initiated the male pathway at 10 dah, then both male and female pathways were activated, as reflected by the simultaneous expression of Dmrt1 and Cyp19a1a in different cell populations at 18 dah, shifted to the female pathway expressing only Cyp19a1a at 36 dah, and finally developed into functional ovaries as adults. The male pathway and Dmrt1 expression was initiated, but failed to be maintained, in the absence of Gsdf. Aromatase-inhibitor treatment from 10 to 35 dah, however, rescued the phenotype, resulting in XY gsdf(-/-) with normal testes that expressed Dmrt1 and Cyp11b2. In vitro promoter analyses demonstrated that Dmrt1 activated gsdf expression in a dose-dependent manner in the presence of Sf1, even though Dmrt1 alone could not. Taken together, our results demonstrated that gsdf is a downstream gene of dmrt1. Gsdf probably inhibits estrogen production to trigger testicular differentiation. Mol. Reprod. Dev. 83: 497-508, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Fish Proteins , Sex Determination Processes/physiology , Testis/embryology , Tilapia , Transcription Factors , Transforming Growth Factor beta , Animals , Fish Proteins/genetics , Fish Proteins/metabolism , Male , Tilapia/embryology , Tilapia/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
12.
PLoS One ; 10(12): e0145182, 2015.
Article in English | MEDLINE | ID: mdl-26700177

ABSTRACT

In fish, oocyte meiotic maturation is regulated by 17α, 20ß-dihydroxy-progesterone through cAMP. To study the role of cAMP response element binding protein (CREB) in meiotic maturation, we cloned and characterized the expression pattern of CREBs from two fish models, the Nile tilapia and catfish. In the Nile tilapia three different CREBs were identified where in CREB1 was found in many tissues including gonads with abundant expression in testis. CREB2, few amino acids shorter than CREB1, was expressed in several tissues with abundant expression in ovary. In addition, a 3'UTR variant form, CREB3 was exclusively found in ovary. During natural 14-day ovarian cycle of the Nile tilapia, CREB1 expression was stable throughout vitellogenesis with a sharp decrease on the day of spawning. In contrast, CREB2 remain unchanged throughout the ovarian cycle, however elevated in 11-day full-grown immature ovarian follicle and after hCG-induction. Interestingly, CREB3 expression was induced three folds on the day of spawning as well as during hCG-induced oocyte maturation. Based on the synergistic expression pattern, CREB1 is likely to control oocyte growth, whereas CREB 2 and 3 contribute to oocyte maturation in tilapia and the latter seems to be critical. In catfish, a single form of CREB showed a maximum expression during spawning phase and hCG-induced maturation both in vivo and in vitro augmented CREB expression. These results suggest that spatial and temporal expression of CREBs seems to be important for final oocyte maturation and may also regulate oocyte growth in fish.


Subject(s)
Catfishes/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Fish Proteins/metabolism , Oocytes/metabolism , Tilapia/metabolism , Amino Acid Sequence , Animals , Catfishes/genetics , Cloning, Molecular , Cyclic AMP Response Element-Binding Protein/genetics , DNA, Complementary/chemistry , Female , Fish Proteins/genetics , Gene Expression Profiling , Male , Molecular Sequence Data , Oocytes/growth & development , Phylogeny , Sequence Alignment , Tilapia/genetics , Vitellogenesis
13.
Mol Cell Endocrinol ; 415: 87-99, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26265450

ABSTRACT

The Nile tilapia, Oreochromis niloticus, is a gonochoristic teleost fish with an XX/XY genetic system and is an excellent model for gonadal sex differentiation. In the present study, we screened novel genes that were expressed predominantly in either XY or XX undifferentiated gonads during the critical period for differentiation of gonads into ovaries or testes using microarray screening. We focused on one of the isolated 12 candidate genes, #9475, which was an ortholog of gsdf (gonadal soma-derived factor), a member of the transforming growth factor-beta superfamily. #9475/gsdf showed sexual dimorphism in expression in XY gonads before any other testis differentiation-related genes identified in this species thus far. We also overexpressed the #9475/gsdf gene in XX tilapia, and XX tilapia bearing the #9475/gsdf gene showed normal testis development, which suggests that #9475/gsdf plays an important role in male determination and/or differentiation in tilapia.


Subject(s)
Cichlids/genetics , Testis/growth & development , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Animals , Cichlids/growth & development , Cichlids/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Male , Oligonucleotide Array Sequence Analysis/methods , Phylogeny , Sex Characteristics , Sex Differentiation , Testis/metabolism
14.
Gene ; 569(1): 141-52, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26024593

ABSTRACT

The nuclear receptor (NR) superfamily, which is divided into 7 subfamilies, constitutes one of the largest classes of transcription factors. In this study, through comprehensive database search, we identified all NRs (including 4 novel members) from the tilapia (75), common carp (137), zebrafish (73), fugu (73), tetraodon (72), stickleback (70), medaka (69), coelacanth (55), spotted gar (51) and elephant shark (50). For 21 NRs, two duplicates were found in teleosts, while only one in tetrapods. These duplicates, except those of DAX1, SHP and GCNF found in the elephant shark, were derived from 3R (third round of genome duplication). The linkage duplication of 5 syntenic blocks (comprising 14 duplicated NR couples) in teleosts further supported their 3R origin. Based on transcriptome data from adult tilapia, 53 NRs were found to be expressed in more than one tissue (brain, head kidney, heart, liver, kidney, muscle, ovary and testis), and 4 were tissue-specific, indicating their essential roles in the corresponding tissue. Based on the XX and XY gonadal transcriptome data from four developmental stages, 65 NRs were detected in gonads, with 21, 31, 11 and 29 expressed sexual dimorphically at 5, 30, 90 and 180days after hatching, respectively. The expression of four selected genes was examined by in situ hybridization (ISH) and quantitative PCR (qPCR) to validate the spatial and temporal expression profiles of NRs. Comparative analyses of the expression profiles of duplicated NRs revealed divergence in gene expression as well as gene function. Our results demonstrated that NRs may play important roles in sex determination and gonadal development in teleosts.


Subject(s)
Cichlids/genetics , Evolution, Molecular , Receptors, Cytoplasmic and Nuclear/genetics , Animals , Gene Expression Profiling , Gene Expression Regulation , Genome , Humans , Multigene Family/genetics , Receptors, Cytoplasmic and Nuclear/biosynthesis , Receptors, Cytoplasmic and Nuclear/isolation & purification , Sequence Alignment , Tissue Distribution
15.
Gen Comp Endocrinol ; 221: 134-43, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-25701739

ABSTRACT

Estradiol-17ß (E2) and maturation-inducing hormone (MIH) are two steroid hormones produced in the teleost ovary that are required for vitellogenic growth and final oocyte maturation and ovulation. During this transition, the main steroid hormone produced in the ovary shifts from estrogens to progestogens. In the commercially important Japanese eel (Anguilla japonica), the MIH 17α,20ß-dihydroxy-4-pregnen-3-one (DHP) is generated from its precursor by P450c17, which has both 17α-hydroxylase and C17-20 lyase activities. In order to elucidate the regulatory mechanism underlying the steroidogenic shift from E2 to DHP and the mechanistic basis for the failure of this shift in artificially matured eels, the cDNA for cyp17a2-which encodes P450c17-II-was isolated from the ovary of wild, mature Japanese eel and characterized, and the expression patterns of cyp17a1 and cyp17a2 during induced ovarian development were investigated in cultured eel ovaries. Five cDNAs (types I-V) encoding P450c17-II were identified that had minor sequence variations. HEK293T cells transfected with all but type II P450c17-II converted exogenous progesterone to 17α-hydroxyprogesterone (17α-P), providing evidence for 17α-hydroxylase activity; however, a failure to convert 17α-P to androstenedione indicated that C17-20 lyase activity was absent. Cyp17a2 mRNA was expressed mainly in the head kidney, ovary, and testis, and quantitative PCR analysis demonstrated that expression in the ovary increased during induced vitellogenesis and oocyte maturation/ovulation. In contrast, P450c17-I showed both 17α-hydroxylase and C17-20 lyase activities, and cyp17a1 expression increased until the mid-vitellogenic stage and remained high thereafter. Considering the high level of cyp17a2 transcript in the eel ovary at the migratory nucleus stage together with our previous report demonstrating that eel ovaries have strong 17α-P-to-DHP conversion activity, the failure of artificially maturing eels to produce the maturation-inducing DHP may be explained by a deficiency in 17α-P production due to the persistence of cyp17a1 expression after the completion of vitellogenesis.


Subject(s)
Anguilla/metabolism , DNA, Complementary/genetics , Gene Expression Regulation, Developmental/physiology , Ovary/embryology , Steroid 17-alpha-Hydroxylase/genetics , Vitellogenesis/physiology , Amino Acid Sequence , Anguilla/genetics , Anguilla/growth & development , Animals , Base Sequence , Estradiol/metabolism , Female , HEK293 Cells , Humans , Male , Molecular Sequence Data , Progesterone/metabolism , Progestins/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Sex Factors , Steroid 17-alpha-Hydroxylase/metabolism , Steroids/metabolism , Testis/metabolism
16.
Environ Res ; 133: 371-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24952460

ABSTRACT

BACKGROUND: Feminization of animals derived from areas polluted by endocrine disrupting chemicals (EDCs) has been observed in all classes of vertebrates. However, feminization of artificially reared offspring by feeding of specific living organisms has never been reported. METHODS: Different food (including Limnodilus spp collected from the wild) and time treatment were applied to southern catfish. In addition, EDCs in Limnodilus spp., an annelid worm collected from wild contaminated small streams, was detected by LC-MS (Liquid chromatography-mass spectrometry). Serum estradiol-17ß and vitellogenin (VTG) levels and gonadal Sf1, Dmrt1, Foxl2, Cyp19a1a expression levels in the catfish were measured through Estradiol/VTG EIA Kit and real-time PCR. RESULTS: Here we report that feeding of Limnodilus spp. resulted in complete feminization of southern catfish, which has a 1:1 sex ratio in wild conditions. Furthermore, HPLC analysis showed that the extraction of Limnodilus spp. contained EDCs, including bisphenol A (BPA), diethylstilbestrol (DES), 4-tert-octylphenol (4-t-OP) and 4-nonylphenol (4-NP), which were further confirmed by LC-MS. Feeding southern catfish using commercial diets sprayed with EDCs cocktail also resulted in 100% female, whereas the control fish displayed approximate 1:1 sex ratio. Limnodilus spp. fed fish displayed similar serum estradiol-17ß and VTG levels and gonadal Sf1, Dmrt1, Foxl2, Cyp19a1a expression levels to those of female control. CONCLUSION: These results demonstrated that EDCs in Limnodilus spp. cause southern catfish feminization by affecting aromatase expression and endogenous estrogen level. This is the first report showing that feeding of any living organism resulted in complete feminization of a vertebrate.


Subject(s)
Annelida/chemistry , Catfishes , Endocrine Disruptors/analysis , Feminization/chemically induced , Water Pollution, Chemical/adverse effects , Animals , Chromatography, Liquid , Endocrine Disruptors/adverse effects , Female , Gonads/metabolism , Gonads/pathology , Male , Mass Spectrometry , Sex Differentiation , Vitellogenins/blood
17.
Endocrinology ; 155(4): 1476-88, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24437491

ABSTRACT

Females with differentiated ovary of a gonochoristic fish, Nile tilapia, were masculinized by long-term treatment with an aromatase inhibitor (Fadrozole) in the present study. The reversed gonads developed into functional testes with fertile sperm. The longer the fish experienced sex differentiation, the longer treatment time was needed for successful sex reversal. Furthermore, Fadrozole-induced sex reversal, designated as secondary sex reversal (SSR), was successfully rescued by supplement of exogenous 17ß-estradiol. Gonadal histology, immunohistochemistry, transcriptome, and serum steroid level were analyzed during SSR. The results indicated that spermatogonia were transformed from oogonia or germline stem cell-like cells distributed in germinal epithelium, whereas Leydig and Sertoli cells probably came from the interstitial cells and granulosa cells of the ovarian tissue, respectively. The transdifferentiation of somatic cells, as indicated by the appearance of doublesex- and Mab-3-related transcription factor 1 (pre-Sertoli cells) and cytochrome P450, family 11, subfamily B, polypeptide 2 (pre-Leydig cells)-positive cells in the ovary, provided microniche for the transdifferentiation of germ cells. Decrease of serum 17ß-estradiol was detected earlier than increase of serum 11-ketotestosterone, indicating that decrease of estrogen was the cause, whereas increase of androgen was the consequence of SSR. The sex-reversed gonad displayed more similarity in morphology and histology with a testis, whereas the global gene expression profiles remained closer to the female control. Detailed analysis indicated that transdifferentiation was driven by suppression of female pathway genes and activation of male pathway genes. In short, SSR provides a good model for study of sex reversal in teleosts and for understanding of sex determination and differentiation in nonmammalian vertebrates.


Subject(s)
Aromatase Inhibitors/chemistry , Cell Transdifferentiation/drug effects , Ovary/drug effects , Ovary/physiology , Testis/drug effects , Testis/physiology , Animals , Cichlids , Estradiol/chemistry , Fadrozole/chemistry , Female , Gene Expression Profiling , Male , Testosterone/analogs & derivatives , Testosterone/chemistry , Time Factors
18.
Endocrinology ; 154(12): 4814-25, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24105480

ABSTRACT

Transcription activator-like effector nucleases (TALENs) are a powerful approach for targeted genome editing and have been proved to be effective in several organisms. In this study, we reported that TALENs can induce somatic mutations in Nile tilapia, an important species for worldwide aquaculture, with reliably high efficiency. Six pairs of TALENs were constructed to target genes related to sex differentiation, including dmrt1, foxl2, cyp19a1a, gsdf, igf3, and nrob1b, and all resulted in indel mutations with maximum efficiencies of up to 81% at the targeted loci. Effects of dmrt1 and foxl2 mutation on gonadal phenotype, sex differentiation, and related gene expression were analyzed by histology, immunohistochemistry, and real-time PCR. In Dmrt1-deficient testes, phenotypes of significant testicular regression, including deformed efferent ducts, degenerated spermatogonia or even a complete loss of germ cells, and proliferation of steroidogenic cells, were observed. In addition, disruption of Dmrt1 in XY fish resulted in increased foxl2 and cyp19a1a expression and serum estradiol-17ß and 11-ketotestosterone levels. On the contrary, deficiency of Foxl2 in XX fish exhibited varying degrees of oocyte degeneration and significantly decreased aromatase gene expression and serum estradiol-17ß levels. Some Foxl2-deficient fish even exhibited complete sex reversal with high expression of Dmrt1 and Cyp11b2. Furthermore, disruption of Cyp19a1a in XX fish led to partial sex reversal with Dmrt1 and Cyp11b2 expression. Taken together, our data demonstrated that TALENs are an effective tool for targeted gene editing in tilapia genome. Foxl2 and Dmrt1 play antagonistic roles in sex differentiation in Nile tilapia via regulating cyp19a1a expression and estrogen production.


Subject(s)
Estrogens/metabolism , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Developmental/physiology , Sex Differentiation/physiology , Tilapia/growth & development , Transcription Factors/metabolism , Animals , Base Sequence , Deoxyribonucleases/genetics , Deoxyribonucleases/metabolism , Estrogens/genetics , Fish Proteins/genetics , Fish Proteins/metabolism , Forkhead Transcription Factors/genetics , Gene Deletion , Gene Expression Regulation, Enzymologic , Molecular Sequence Data , Mutation , Tilapia/embryology , Tilapia/metabolism , Transcription Factors/genetics
19.
Fish Physiol Biochem ; 38(5): 1427-39, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22451340

ABSTRACT

Fibroblast growth factors (FGFs) have been proved to participate in a wide variety of processes, including growth, differentiation, cell proliferation, migration, sex determination and sex differentiation. The roles of FGF9/16/20 subfamily members in the gonadal development of teleost fish have not yet been reported. Three FGFs (16, 20a and 20b) of the FGF9/16/20 subfamily were cloned from the Nile tilapia by RT-PCR and RACE. Phylogenetic, bioinformatic and syntenic analyses demonstrated that these cloned FGFs are genuine FGF16, 20a and 20b. Our analyses further supported the non-existence of FGF9 ortholog and the existence of two FGF20 paralogs in teleost genomes. Tissue distribution analysis by RT-PCR demonstrated that FGF16 was expressed in a wide range of tissues including the testis and ovary, FGF20b in the brain, pituitary, intestine and ovary, but not in the testis, while FGF20a in the brain, pituitary and spleen, but not in the gonad. These results were consistent with the Northern blot analysis. The expression profiles of FGF16 and FGF20b during normal and sex reversed gonadal development were investigated by real-time PCR. Both showed much higher expression in the XX ovary and 17 beta-estradiol induced XY ovary compared with the XY testis and fadrozole and tamoxifen induced XX testis, with the highest in both sexes at 120 dah. Strong signals of FGF16 and FGF20b were detected in phase II oocytes by in situ hybridization. These data suggest that FGF9/16/20 subfamily is involved in the early oocyte development of the female.


Subject(s)
Cichlids/metabolism , Fibroblast Growth Factors/metabolism , Gene Expression Regulation/physiology , Oocytes/physiology , Amino Acid Sequence , Animals , Cloning, Molecular , Female , Fibroblast Growth Factors/genetics , Male , Molecular Sequence Data , Phylogeny , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
20.
Endocrinology ; 151(3): 1331-40, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20056824

ABSTRACT

Doublesex- and Mab-3-related transcription factor-1 (Dmrt1) is an important transcription factor implicated in early testicular differentiation in vertebrates, but its target genes are largely unknown. In the Nile tilapia, estrogen is the natural inducer of ovarian differentiation. Our recent studies have shown that Forkhead-l2 up-regulated transcription of the Cyp19a1a gene (aromatase) in the gonads in a female-specific manner. However, the upstream factor(s) down-regulating Cyp19a1a expression during testicular differentiation remains unclear. In the present study, we used in vitro (promoter analysis) and in vivo (transgenesis and in situ hybridization) approaches to examine whether Dmrt1 inhibits Cyp19a1a's transcriptional activity. The in vitro analysis using luciferase assays revealed that Dmrt1 repressed basal as well as Ad4BP/SF-1-activated Cyp19a1a transcription in HEK 293 cells. Luciferase assays with various deletions of Dmrt1 also showed that the Doublesex and Mab-3 domain is essential for the repression. In vitro-translated Dmrt1 and the nuclear extract from tilapia testis could directly bind to the palindrome sequence ACATATGT in the Cyp19a1a promoter, as determined by EMSAs. Transgenic overexpression of Dmrt1 in XX fish resulted in decreased aromatase gene expression, reduced serum estradiol-17beta levels, retardation of the ovarian cavity's development, varying degrees of follicular degeneration, and even a partial to complete sex reversal. Our results indicate that aromatase is one of the targets of Dmrt1. Dmrt1 suppresses the female pathway by repressing aromatase gene transcription and estrogen production in the gonads of tilapia and possibly other vertebrates.


Subject(s)
Aromatase/metabolism , Gene Expression Regulation, Developmental , Sex Differentiation , Steroidogenic Factor 1/metabolism , Transcription Factors/metabolism , Animals , Cell Line , Consensus Sequence , Estradiol/blood , Female , Humans , Male , Mice , Organisms, Genetically Modified , Response Elements , Tilapia
SELECTION OF CITATIONS
SEARCH DETAIL
...