Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Front Microbiol ; 15: 1320500, 2024.
Article in English | MEDLINE | ID: mdl-38525084

ABSTRACT

Introduction: Postmenopausal osteoporosis (PMOP) is a common chronic disease, and the loss of bone density and bone strength after menopause are its main symptoms. Effective treatments for PMOP are still uncertain, but Chinese medicine has some advantages in slowing down bone loss. Shengu granules are often used clinically to treat PMOP. It has been shown to be an effective prescription for the treatment of PMOP, and there is evidence that gut flora may play an important role. However, whether Shengu granules attenuate PMOP by modulating gut flora and related mechanisms remains unclear. Methods: In this study, we mainly examined the bone strength of the femur, the structure of the intestinal microbiota, SCFAs in the feces and the level of FOXP3 cells in the colon. To further learn about the inflammation response, the condition of the mucosa and the level of cytokines in the serum also included in the testing. In addition, to get the information of the protein expression, the protein expression of OPG and RANKL in the femur and the protein expression of ZO-1 and Occludin in the colon were taken into account. Results: The osteoporosis was significantly improved in the SG group compared with the OVX group, and the diversity of intestinal flora, the secretion level of SCFAs and the expression level of FOXP3 were significantly increased compared with the OVX group. In terms of inflammatory indicators, the intestinal inflammation scores of the SG group was significantly lower than those in the OVX group. Additionally, the serum expression levels of IL-10 and TGF-ß in the SG group were significantly increased compared with the OVX group, and the expression levels of IL-17 and TNF-α were significantly decreased compared with the OVX group. In terms of protein expression, the expression levels of ZO-1, Occluding and OPG were significantly increased in the SG group compared with the OVX group, and the expression level of RANKL was significantly decreased compared with the OVX group. Discussion: Shengu granules treatment can improve the imbalance of intestinal flora, increase the secretion of SCFAs and the expression of FOXP3, which reduces the inflammatory response and repairs the intestinal barrier, as well as regulates the expression of OPG/RANKL signaling axis. Overall, Shengu granules ameliorate ovariectomy-induced osteoporosis by the gut-bone-immune axis.

2.
Transl Cancer Res ; 12(10): 2911-2922, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37969394

ABSTRACT

Background: As a new form of cell death, ferroptosis has been shown to have inhibitory effects on a variety of tumor cells except oral squamous cell carcinoma (OSCC). There were few investigations on the effects and molecular mechanisms of piperlongumine (PL, a ferroptosis inducer) and CB-839 (a GLS1 inhibitor which promotes ferroptosis) on OSCC cells. This article assesses the anticancer effect and mechanism of PL as well as combined with CB-839. Methods: OSCC cells were treated with specified concentration of PL alone or with ferroptosis inhibitor Ferrostatin-1 (Fer-1) and antioxidant N-Acetylcysteine (NAC) to assess their effects on biological characteristics such as cell proliferation, cell death and intracellular ferroptosis related pathways. Also, cells were treated with PL combined with CB-839 to evaluate the synergistic effect of CB-839 on PL's anticancer effects. Results: The results showed that the proliferation rate of PL-treated OSCC cells were decreased in a dose- and time-dependent manner. PL can induce OSCC cells apoptosis. Lipid peroxidation (LPO) and intracellular reactive oxygen species (ROS) were accumulated after PL treatment. We found some protein changes significantly such as the expression of DMT1 increased, and the expression of FTH1, SLC7A11 and GPX4 decreased. In addition, the anti-proliferation effect of PL can be reversed by Fer-1 and NAC and the level of LPO and ROS was decreased accordingly. Importantly, we found that PL and CB-839 in combination could decrease the cell viability and the LPO level synergistically, accompanied by a large consumption of glutathione (GSH). These evidences prove that PL can induce ferroptosis of OSCC cells, which can be enhanced by CB-839. Conclusions: Our study suggested that the nature product PL can induce the ferroptotic death of OSCC cells, which is further enhanced when combined with CB-839. The synergistic anticancer effect of these two may prove new strategy for OSCC treatment.

3.
Opt Express ; 31(15): 24939-24951, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37475309

ABSTRACT

In the dispersive limit, the conventional photon blockade effect cannot be realized due to the absence of photon nonlinearity. We propose a scheme to recover the photon blockade effect of the dispersive Tavis-Cummings model, which makes it possible to realize the conventional photon blockade effect in the dispersive limit. It is shown that both single-photon and two-photon blockade effects can be recovered at appropriate qubit driving strength. The optimal qubit drive strength and cavity field drive detuning are given analytically. All analyses can be verified by numerical simulation, and the strongest photon blockade effect with the largest average photon number can be produced when the single excitation resonance condition is satisfied. Moreover, we find that the achieved two-photon blockade effect is relatively robust to thermal noise. Our proposal is able to obtain single-photon sources with high purity and high brightness and has great potential for applications in quantum communication processing.

4.
Opt Express ; 31(14): 22343-22357, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37475347

ABSTRACT

We propose a scheme to generate nonreciprocal photon blockade in a stationary whispering gallery microresonator system based on two physical mechanisms. One of the two mechanisms is inspired by recent work [Phys. Rev. Lett.128, 083604 (2022)10.1103/PhysRevLett.128.083604], where the quantum squeezing caused by parametric interaction not only shifts the optical frequency of propagating mode but also enhances its optomechanical coupling, resulting in a nonreciprocal conventional photon blockade phenomenon. On the other hand, we also give another mechanism to generate stronger nonreciprocity of photon correlation according to the destructive quantum interference. Comparing these two strategies, the required nonlinear strength of parametric interaction in the second one is smaller, and the broadband squeezed vacuum field used to eliminate thermalization noise is no longer needed. All analyses and optimal parameter relations are further verified by numerically simulating the quantum master equation. Our proposed scheme opens a new avenue for achieving the nonreciprocal single photon source without stringent requirements, which may have critical applications in quantum communication, quantum information processing, and topological photonics.

5.
World J Clin Cases ; 11(15): 3395-3407, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37383912

ABSTRACT

Injury to the anterior talofibular ligament (ATFL) is a common acute injury of the lateral foot ligament. Untimely and improper treatment significantly affects the quality of life and rehabilitation progress of patients. The purpose of this paper is to review the anatomy and the current methods of diagnosis and treatment of acute injury to the ATFL. The clinical manifestations of acute injury to the ATFL include pain, swelling, and dysfunction. At present, non-surgical treatment is the first choice for acute injury of the ATFL. The standard treatment strategy involves the "peace and love" principle. After initial treatment in the acute phase, personalized rehabilitation training programs can be followed. These may involve proprioception training, muscle training, and functional exercise to restore limb coordination and muscle strength. Static stretching and other techniques to loosen joints, acupuncture, moxibustion massage, and other traditional medical treatments can relieve pain, restore range of motion, and prevent joint stiffness. If the non-surgical treatment is not ideal or fails, surgical treatment is feasible. Currently, arthroscopic anatomical repair or anatomical reconstruction surgery is commonly used in clinical practice. Although open Broström surgery provides good results, the modified arthroscopic Broström surgery has many advantages, such as less trauma, rapid pain relief, rapid postoperative recovery, and fewer complications, and is more popular with patients. In general, when treating acute injury to the ATFL, treatment management and methods should be timely and reasonably arranged according to the specific injury scenario and attention should be paid to the timely combination of multiple therapies to achieve the best treatment results.

6.
World J Clin Cases ; 11(8): 1741-1752, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36970002

ABSTRACT

Achalasia cardia, type of esophageal dynamic disorder, is a relatively rare primary motor esophageal disease characterized by the functional loss of plexus ganglion cells in the distal esophagus and lower esophageal sphincter. Loss of function of the distal and lower esophageal sphincter ganglion cells is the main cause of achalasia cardia, and is more likely to occur in the elderly. Histological changes in the esophageal mucosa are considered pathogenic; however, studies have found that inflammation and genetic changes at the molecular level may also cause achalasia cardia, resulting in dysphagia, reflux, aspiration, retrosternal pain, and weight loss. Currently, the treatment options for achalasia focus on reducing the resting pressure of the lower esophageal sphincter, helping to empty the esophagus and relieve symptoms. Treatment measures include botulinum toxin injection, inflatable dilation, stent insertion, and surgical myotomy (open or laparoscopic). Surgical procedures are often subject to controversy owing to concerns about safety and effectiveness, particularly in older patients. Herein, we review clinical epidemiological and experimental data to determine the prevalence, pathogenesis, clinical presentation, diagnostic criteria, and treatment options for achalasia to support its clinical management.

7.
World J Clin Cases ; 10(15): 4843-4855, 2022 May 26.
Article in English | MEDLINE | ID: mdl-35801039

ABSTRACT

BACKGROUND: Chemotherapy-induced peripheral neuropathy (CIPN) is a severe and long-lasting side effect caused by various anticancer agents that damage sensory, motor and autonomic nerves. It can cause maladaptive behaviors, including disease severity, anxiety, depression, sleep disorders, falls, and social impairment. These disorders have physical, psychological and social effects on patients and can seriously influence their quality of life. AIM: To investigate the current situation of psychosocial adaptation to the disease and its influencing factor in patients with CIPN. METHODS: A convenience sampling method was used to select 233 patients with CIPN in our hospital from February to August 2021. In addition, a cross-sectional survey was conducted using a sociodemographic questionnaire, the Self-Report Psychosocial Adjustment to Illness Scale, and the European Organisation for the Research and Treatment of Cancer Quality of Life CIPN20 (QLQ-CIPN20). Factors influencing psychosocial adaptation in patients with CIPN were analyzed by t-test or one-way analysis of variance, correlation analysis, multiple stepwise regression analysis, and structural equation models. RESULTS: The psychosocial adaptation score of patients with CIPN was 52.51 ± 13.18. Multivariate analysis showed that autonomic nerves, tumor stage, motor nerves, education level, availability of caregivers, semi-retirement status, CIPN grade were independent risk factors for patients with CIPN (P < 0.05). Structural equation models showed that QLQ-CIPN20 mediated the relationship between CIPN grade, tumor stage, and psychosocial adaptation. CONCLUSION: Patients with CIPN have poor psychosocial adaptation and are affected by a variety of physiological, psychological, and social factors. Patients' adaptive responses should be assessed, and targeted interventions implemented.

8.
World J Clin Cases ; 9(30): 8999-9010, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34786383

ABSTRACT

BACKGROUND: Stroke has a great influence on the patient's mental health, and reasonable psychological adjustment and disease perception can promote the recovery of mental health. AIM: To explore the relationships among resilience, coping style, and uncertainty in illness of stroke patients. METHODS: A retrospective study was used to investigate 154 stroke patients who were diagnosed and treated at eight medical institutes in Henan province, China from October to December 2019. We used the Mishel Uncertainty in Illness Scale, the Connor-Davidson Resilience Scale, and the Medical Coping Modes Questionnaire to test the uncertainty in illness, resilience, and coping style, respectively. RESULTS: Resilience had a significant moderating role in the correlation between coping style and unpredictability and information deficiency for uncertainty in illness (P < 0.05). Further, the tenacity and strength dimensions of resilience mediated the correlation between the confrontation coping style and complexity, respectively (P < 0.05). The strength dimension of resilience mediated the correlation between an avoidance coping style and the unpredictability of uncertainty in illness (P < 0.05), as well as correlated with resignation, complexity, and unpredictability (P < 0.05). CONCLUSION: Resilience has moderating and mediating roles in the associations between coping style and uncertainty in illness, indicating that it is vital to improve resilience and consider positive coping styles for stroke patients in the prevention and control of uncertainty in illness.

9.
Front Oncol ; 11: 705866, 2021.
Article in English | MEDLINE | ID: mdl-34660273

ABSTRACT

INTRODUCTION: The aim of this study is to rigorously review the efficacy and safety of olanzapine in chemotherapy-induced nausea and vomiting (CINV) settings including (1) at 5- and 10-mg doses, and (2) the setting of highly emetogenic chemotherapy (HEC) and moderately emetogenic chemotherapy (MEC). METHODS: Embase, Pubmed, and Cochrane Library were searched from the establishment of the database through April 18, 2021. The primary efficacy endpoints were the rate of complete response (CR; no emesis and no rescue), in the acute (0-24 h post-chemotherapy), delayed (24-120 h post-chemotherapy), and overall (0-120 h post-chemotherapy) phases. The secondary efficacy endpoints were the rates of complete control (CC, no nausea, and no emesis), for each phase. Safety endpoints were the rate of somnolence, as assessed by Common Terminology Criteria for Adverse Events (CTCAE) criteria. The Mantel-Haenszel, random, or fixed-effect analysis model was used to compute risk ratios and accompanying 95% confidence intervals for each endpoint. For endpoints that statistically favored one arm, absolute risk differences were computed to assess whether there is a 10% or greater difference, used as the threshold for clinical significance by MASCC/ESMO. RESULT: Nine studies reported the use of 10 mg olanzapine to prevent CINV; three studies reported the use of 5 mg olanzapine to prevent CINV. When olanzapine was administered at 10 mg for HEC patients, the six endpoints were statistically and clinically better than the control group. For MEC patients, four out of six endpoints were better than the control group. When olanzapine is administered at 5 mg for MEC patients, four endpoints have statistical and clinical advantages. The sedative effects of 10 and 5 mg olanzapine were statistically more significant than those of the control group. The sedative effect of the 10-mg olanzapine group was more significant than that of the 5-mg olanzapine group, both statistically and clinically. CONCLUSION: 5 mg olanzapine may be as effective as 10 mg olanzapine for patients with HEC and MEC, and its sedative effect is lower than 10 mg olanzapine. Fewer studies on 5 mg olanzapine have led to uncertain data. In the future, more randomized controlled trials of 5 mg olanzapine are needed to study the balance between the effectiveness and safety of olanzapine.

10.
Opt Express ; 29(8): 11773-11783, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33984952

ABSTRACT

We propose a scheme to generate squeezed states of magnon and phonon modes and verify squeezing transfer between different modes of distinct frequencies in a cavity magnomechanical system which is composed of a microwave cavity and a yttrium iron garnet sphere. We present that by activating the magnetostrictive force in the ferrimagnet, realized by driving the magnon mode with red-detuned and blue-detuned microwave fields, the driven magnon mode can be prepared in a squeezed state. Moreover, the squeezing can be transferred to the cavity mode via the cavity-magnon beamsplitter interaction with strong magnomechanical coupling. We show that under the weak coupling regime, large mechanical squeezing of phonon mode can be achieved, which verifies that our scheme can find the existence of quantum effects at macroscopic scales. Furthermore, distinct parameter regimes for obtaining large squeezing of the magnons and phonons are given, which is the principal feature of our scheme. The considered scheme can be extended to hybrid optical systems, and can facilitate the advancement for realization of strong mechanical squeezing in cavity magnomechanical systems.

11.
IEEE Trans Cybern ; 51(7): 3845-3857, 2021 Jul.
Article in English | MEDLINE | ID: mdl-31634149

ABSTRACT

In this article, two kinds of complex dynamical networks (CDNs) with state and derivative coupling are investigated, respectively. First, some important concepts about finite-time passivity (FTP), finite-time output strict passivity, and finite-time input strict passivity are introduced. By making use of state-feedback controllers and adaptive state-feedback controllers, several sufficient conditions are given to guarantee the FTP of these two network models. On the other hand, based on the obtained FTP results, some finite-time synchronization criteria for the CDNs with state and derivative coupling are gained. Finally, two simulation examples are proposed to verify the availability of the derived results.

12.
IEEE Trans Cybern ; 51(2): 927-937, 2021 Feb.
Article in English | MEDLINE | ID: mdl-31094698

ABSTRACT

In this paper, the output synchronization problem for complex dynamical networks (CDNs) with multiple output or output derivative couplings is discussed in detail. Under the help of Lyapunov functional and inequality techniques, an output synchronization criterion is presented for CDNs with multiple output couplings (CDNMOCs). To ensure the output synchronization of CDNMOCs, an adaptive control scheme is also devised. Similarly, we also take into account the adaptive output synchronization and output synchronization of CDNs with multiple output derivative couplings. At last, several numerical examples are designed to testify the effectiveness of the proposed results.

13.
Opt Express ; 28(20): 28942-28953, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-33114802

ABSTRACT

The dissipative squeezing mechanism is an effective method to generate the strong squeezing, which is important in the precision metrology. Here, we propose a practical method to achieve arbitrary bosonic squeezing via introducing frequency modulation into the coupled harmonic resonator model. We analyze the effect of frequency modulation and give the analytical and numerical squeezing results, respectively. To measure the accurate dynamic squeezing in our proposal, we give a more general defination of the relative squeezing degree. Finally, the proposed method is extended to generate the strong mechanical squeezing (>3 dB) in a practical optomechanical system consisting of a graphene mechanical oscillator coupled to a superconducting microwave cavity. The result indicates that the strong mechanical squeezing can be effectively achieved even when the mechanical oscillator is not initially in its ground state. The proposed method expands the study on nonclassical state and does not need the bichromatic microwave driving technology.

14.
Opt Lett ; 45(9): 2604-2607, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32356827

ABSTRACT

We propose a scheme to enhance the single- and two-photon blockade effects significantly in a nonlinear hybrid optomechanical system with optical parametric amplification (OPA). The scheme does not rely on strong single-photon optomechanical coupling and can eliminate the disadvantages of suppressing multi-photon excitation incompletely. Through analyzing the single-photon blockade (1PB) mechanism and optimizing the system parameters, we obtain a perfect 1PB with a high occupancy probability of single-photon excitation, which means that a high-quality and efficient single-photon source can be generated. Moreover, we find that not only the two-photon blockade (2PB) effect is significantly enhanced, but also the region where 2PB occurs is widened when OPA exists, where we also derive the optimal parameter condition to maximize two-photon emission and higher photon excitations intensely suppressed at the same time.

15.
Polymers (Basel) ; 12(2)2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32054073

ABSTRACT

Semi-alicyclic colorless and transparent polyimide (CPI) films usually suffer from the high linear coefficients of thermal expansion (CTEs) due to the intrinsic thermo-sensitive alicyclic segments in the polymers. A series of semi-alicyclic CPI films containing rigid-rod amide moieties were successfully prepared in the current work in order to reduce the CTEs of the CPI films while maintaining their original optical transparency and solution-processability. For this purpose, two alicyclic dianhydrides, hydrogenated pyromellitic anhydride (HPMDA, I), and hydrogenated 3,3',4,4'-biphenyltetracarboxylic dianhydride (HBPDA, II) were polymerized with two amide-bridged aromatic diamines, 2-methyl-4,4'-diaminobenzanilide (MeDABA, a) and 2-chloro-4,4'-diaminobenzanilide (ClDABA, b) respectively to afford four CPI resins. The derived CPI resins were all soluble in polar aprotic solvents, including N-methyl-2-pyrrolidone (NMP) and N,N-dimethylacetamide (DMAc). Flexible and tough CPI films were successfully prepared by casing the PI solutions onto glass substrates followed by thermally cured at elevated temperatures from 80 °C to 250 °C. The MeDABA derived PI-Ia (HPMDA-MeDABA) and PI-IIa (HBPDA-MeDABA) exhibited superior optical transparency compared to those derived from ClDABA (PI-Ib and PI-IIb). PI-Ia and PI-IIa showed the optical transmittances of 82.3% and 85.8% at the wavelength of 400 nm with a thickness around 25 µm, respectively. Introduction of rigid-rod amide moiety endowed the HPMDA-PI films good thermal stability at elevated temperatures with the CTE values of 33.4 × 10-6/K for PI-Ia and 27.7 × 10-6/K for PI-Ib in the temperature range of 50-250 °C. Comparatively, the HBPDA-PI films exhibited much higher CTE values. In addition, the HPMDA-PI films exhibited good thermal stability with the 5% weight loss temperatures (T5%) higher than 430 °C and glass transition temperatures (Tg) in the range of 349-351 °C.

16.
Opt Express ; 27(21): 29581-29593, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31684217

ABSTRACT

We present a proposal to generate robust optomechanical entanglement induced by the blue-detuning laser and the mechanical gain in a double-cavity optomechanical system. We show that the stability of the system can be obtained by introducing a cavity mode driven by the red-detuning laser in the blue-detuning regime. In contrast to the red-detuning regime, we find that the entanglement in the blue-detuning regime is extremely robust to temperature. The cavity mode driven by the blue-detuning laser can control indirectly the optomechanical entanglement between mechanical resonator and cavity mode driven by the red-detuning laser. Moreover, the entanglement between two cavity modes without direct coupling can also be achieved in our system. Although the entanglement is weak, it is robust to temperature, and meanwhile, the optomechanical entanglement is hardly affected by the temperature when the damping rate of the mechanical oscillator is close to zero. Furthermore, the entanglement amplification at high temperature can be achieved by adjusting the mechanical gain appropriately. Our proposal provides an efficient way to achieve robust optomechanical entanglement in the blue-detuning regime and entanglement amplification in optomechanical system with mechanical gain.

17.
Opt Express ; 27(16): 22855-22867, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31510570

ABSTRACT

We present a scheme for the electromagnetically induced transparency (EIT)-like nonlinear ground-state cooling in a double-cavity optomechanical system in which an optical cavity mode is coupled parametrically to the square of the position of a mechanical oscillator, an additional auxiliary cavity is coupled to the optomechanical cavity. The optimum cooling conditions is derived, based on which the heating process can be well suppressed and the mechanical resonator can be cooled with an optimal effect to near its ground state through EIT-like cooling mechanism even in unresolved sideband regime. It is demonstrated by numerical simulations that not only the average phonon number of steady state is lower than that of single-cavity optomechanical system, but also the cooling rate is greatly faster than that of the linear optomechanical coupling due to the two-phonon cooling process in the quadratic coupling. Also, the ground-state cooling is achievable even with a relatively weak quadratic coupling strengthby tunning the coupling between two cavities to reach the optimum cooling conditions, thus provides an solution for overcoming the limitations of weak quadratic coupling rate in experiments. The proposed approach provides a platform for quantum manipulation of macroscopic mechanical devices beyond the resolved sideband limit and linear coupling regime.

18.
Opt Express ; 26(13): 16250-16264, 2018 Jun 25.
Article in English | MEDLINE | ID: mdl-30119459

ABSTRACT

Experimental realization of the Kitaev model is a greatly attractive topic due to the potential applications to build robust qubits against decoherence in topological quantum computation. In this work, we investigate the charged whispering-gallery microcavity array model and simulate the normal Kitaev chain under this mechanism in the first time. We find that the system reveals profound connections with the normal Kitaev chain and its some derivatives, and the topological property of the system depends on effective optomechanical coupling strength deeply. In optomechanically induced Kitaev topologically nontrivial phase, compared to the normal Kitaev chain in the Majorana basis, the novel and distinct structure of charged whispering-gallery microcavity array model leads to controllable photonic and phononic edge localization. Furthermore, we also simulate the extended Kitaev chain and show that two topologically different nontrivial phases of the system allow one to realize more freewheeling controllable photonic and phononic edge localization. Our model offers an alternative approach to correlate with other more complicated one-dimensional noninteracting spinless topological systems relevant to the p-wave superconducting pairing.

19.
Opt Express ; 26(5): 6143-6157, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29529808

ABSTRACT

A scheme is proposed to cool a rotating mirror close to its ground state in a double-Laguerre-Gaussian-cavity optomechanical system, where an auxiliary cavity and a two-level atomic ensemble simultaneously couple to the original optomechanical cavity. By choosing parameters reasonably, we find that the cooling process of the rotating mirror can be strengthened greatly while the heating process can be suppressed effectively. We show that the proposed ground-state cooling scheme can work well no matter whether in the weak or strong coupling regime for the atomic ensemble and original cavity. Compared with previous related schemes, our scheme works in the unresolved sideband regime with fewer strict limitations for the auxiliary systems.

20.
Sci Rep ; 7(1): 2545, 2017 05 31.
Article in English | MEDLINE | ID: mdl-28566715

ABSTRACT

We propose a scheme to show that the system consisting of two macroscopic oscillators separated in space which are coupled through Coulomb interaction displays the classical-to-quantum transition behavior under the action of optomechanical coupling interaction. Once the optomechanical coupling interaction disappears, the entanglement between the two separated oscillators disappears accordingly and the system will return to classical world even though there exists sufficiently strong Coulomb coupling between the oscillators. In addition, resorting to the squeezing of the cavity field generated by an optical parametric amplifier inside the cavity, we discuss the effect of squeezed light driving on this classical-to-quantum transition behavior instead of injecting the squeezed field directly. The results of numerical simulation show that the present scheme is feasible and practical and has stronger robustness against the environment temperature compared with previous schemes in current experimentally feasible regimes. The scheme might possibly help us to further clarify and grasp the classical-quantum boundary.

SELECTION OF CITATIONS
SEARCH DETAIL
...