Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 180: 102-113, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28495516

ABSTRACT

AIMS: To investigate the antitumor effects of 7-O-geranylquercetin (GQ), a novel O-alkylated derivative of quercetin, against non-small cell lung cancer (NSCLC) cell lines A549 and NCI-H1975 and the corresponding mechanisms. MAIN METHODS: Cell viability was assessed using MTT assay. The expression of proteins involved in apoptosis and autophagy was measured using western blotting. Besides, apoptosis was determined with DAPI staining, Annexin V-PI staining and transmission electron microscopy (TEM) assay, and autophagy was observed with TEM assay. Cell cycle and reactive oxygen species (ROS) level were detected using flow cytometry. KEY FINDINGS: GQ inhibited viability of A549 and NCI-H1975 cells in a dose- and time-dependent manner without apparent cytotoxicity to normal human lung fibroblast cells. GQ down-regulated the expression of apoptosis-related proteins pro-caspase 3 and Bcl-2, and up-regulated the expression of cleaved-PARP and Bax in A549 and NCI-H1975 cells. Meanwhile, GQ-induced cell apoptosis could be attenuated by caspase inhibitor Z-VAD-FMK. Besides, GQ induced autophagosome formation in A549 and NCI-H1975 cells, promoted the expression of autophagy-related proteins LC3-II and Beclin 1, and suppressed the expression of p62. Autophagy inhibition with chloroquine or Beclin 1 siRNA could effectively inhibit GQ-induced apoptosis. Furthermore, GQ treatment increased the generation of ROS, and ROS inhibitor N-acetylcysteine could reverse GQ-induced autophagy and apoptosis. Taken together, GQ could induce apoptosis and autophagy via ROS generation in A549 and NCI-H1975 cells, and GQ-induced autophagy contributed to apoptosis. SIGNIFICANCE: Our findings highlight that GQ is a promising anticancer agent for the treatment of lung cancer.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Quercetin/analogs & derivatives , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Fibroblasts/drug effects , Fibroblasts/metabolism , Flow Cytometry , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung Neoplasms/pathology , Microscopy, Electron, Transmission , Quercetin/pharmacology , Reactive Oxygen Species/metabolism , Time Factors
2.
Iran J Pharm Res ; 15(3): 329-335, 2016.
Article in English | MEDLINE | ID: mdl-27980567

ABSTRACT

Quercetin, a ubiquitous flavonol, represents a promising leading drug for development of new chemotherapeutic agents. However, its limited cytotoxicity to cancer cells hampers its clinical use. In order to obtain novel quercetin derivatives with superior cytotoxicity, seven alkylated quercetin derivatives were synthesized. Solubility of these derivatives was determined by turbidimetry. Cytotoxicity of the high-soluble derivatives against MCF-7 cells and caco-2 cells was determined using MTT assay. Among these seven products, 7-O-butylquercetin had the highest solubility in DMEM medium and 7-O-geranylquercetin had the most potent cytotoxicity. Further study on cytotoxicity of 7-O-geranylquercetin on NCI-H446, A549, MGC-803 and SGC-7901 cell lines revealed potential antiproliferative effects. The 7-O-geranylquercetin is a broad spectrum cytotoxic agent and it may be a promising leading drug for cancer chemotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...