Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Lett ; 41(8-9): 951-961, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31278569

ABSTRACT

OBJECTIVES: A three-species consortium for one-step fermentation of 2-keto-L-gulonic acid (2-KGA) was constructed to better strengthen the cell-cell communication. And the programmed cell death module based on the LuxI/LuxR quorum-sensing (QS) system was established in Gluconobacter oxydans to reduce the competition that between G. oxydans and Ketogulonicigenium vulgare. RESULTS: By constructing and optimizing the core region of the promoter, which directly regulated the expression of lethal ccdB genes in QS system, IR3C achieved the best lethal effect. The consortium of IR3C- K. vulgare-Bacillus megaterium (abbreviated as 3C) achieved the highest 2-KGA titer (68.80 ± 4.18 g/l), and the molar conversion rate was 80.7% within 36 h in 5 l fermenter. Metabolomic analysis on intracellular small molecules of consortia 3C and 1C showed that most amino acids (such as glycine, leucine, methionine and proline) and TCA cycle intermediates (such as succinic acid, fumaric acid and malic acid) were significantly affected. These results further validated that the programmed cell death module based on the LuxI/LuxR QS system in G. oxydans could also faciliate better growth and higher production of consortium 3C for one-step fermentation. CONCLUSIONS: We successfully constructed a novel three-species consortia for one-step vitamin C fermentation by strengthening the cell-cell communication. This will be very useful for probing the rational design principles of more complex multi-microbial consortia.


Subject(s)
Ascorbic Acid/metabolism , Bacillus megaterium/metabolism , Fermentation , Gluconobacter oxydans/metabolism , Microbial Consortia , Rhodobacteraceae/metabolism , Sugar Acids/metabolism , Bacillus megaterium/growth & development , Cell Communication , Gluconobacter oxydans/growth & development , Microbial Interactions , Rhodobacteraceae/growth & development , Vitamins/metabolism
2.
J Ind Microbiol Biotechnol ; 46(1): 21-31, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30368638

ABSTRACT

Microbial consortia, with the merits of strong stability, robustness, and multi-function, played critical roles in human health, bioenergy, and food manufacture, etc. On the basis of 'build a consortium to understand it', a novel microbial consortium consisted of Gluconobacter oxydans, Ketogulonicigenium vulgare and Bacillus endophyticus was reconstructed to produce 2-keto-L-gulonic acid (2-KGA), the precursor of vitamin C. With this synthetic consortium, 73.7 g/L 2-KGA was obtained within 30 h, which is comparable to the conventional industrial method. A combined time-series proteomic and metabolomic analysis of the fermentation process was conducted to further investigate the cell-cell interaction. The results suggested that the existence of B. endophyticus and G. oxydans together promoted the growth of K. vulgare by supplying additional nutrients, and promoted the 2-KGA production by supplying more substrate. Meanwhile, the growth of B. endophyticus and G. oxydans was compromised from the competition of the nutrients by K. vulgare, enabling the efficient production of 2-KGA. This study provides valuable guidance for further study of synthetic microbial consortia.


Subject(s)
Ascorbic Acid/metabolism , Metabolomics , Microbial Consortia , Proteomics , Sugar Acids/metabolism , Bacillus/metabolism , Bacterial Proteins/metabolism , Culture Media/chemistry , Fermentation , Gluconobacter oxydans/metabolism , Industrial Microbiology , Rhodobacteraceae/metabolism
3.
J Ind Microbiol Biotechnol ; 44(7): 1031-1040, 2017 07.
Article in English | MEDLINE | ID: mdl-28283955

ABSTRACT

Defect in the amino acid biosynthetic pathways of Ketogulonicigenium vulgare, the producing strain for 2-keto-L-gulonic acid (2-KGA), is the key reason for its poor growth and low productivity. In this study, five different strains were firstly reconstructed by expressing absent genes in threonine, proline and histidine biosynthetic pathways for better 2-KGA productivity. When mono-cultured in the shake flasks, the strain SyBE_Kv02080002 expressing hsk from Gluconobacter oxydans in threonine biosynthetic pathway achieved the highest biomass and the titer increased by 25.13%. When co-cultured with Bacillus endophyticus, the fermentation cycle decreased by 28.57% than that of the original consortium in 5-L fermenter. Furthermore, reconstruction of threonine biosynthetic pathway resulted in up-regulation of genes encoding sorbosone dehydrogenase and idonate-dehydrogenase, which increased the 2-KGA productivity in SyBE_Kv02080002. This study shows that reconstruction of absent biosynthetic pathways in bacteria is an effective way to enhance the productivity of target products.


Subject(s)
Amino Acids/metabolism , Bacillus/metabolism , Biosynthetic Pathways , Gene Expression Regulation, Bacterial , Rhodobacteraceae/metabolism , Sugar Acids/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bioreactors , Culture Media/chemistry , Fermentation , Gluconobacter oxydans/genetics , Gluconobacter oxydans/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Sorbose/analogs & derivatives , Sorbose/metabolism , Up-Regulation
4.
Science ; 355(6329)2017 03 10.
Article in English | MEDLINE | ID: mdl-28280151

ABSTRACT

Perfect matching of an assembled physical sequence to a specified designed sequence is crucial to verify design principles in genome synthesis. We designed and de novo synthesized 536,024-base pair chromosome synV in the "Build-A-Genome China" course. We corrected an initial isolate of synV to perfectly match the designed sequence using integrative cotransformation and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated editing in 22 steps; synV strains exhibit high fitness under a variety of culture conditions, compared with that of wild-type V strains. A ring synV derivative was constructed, which is fully functional in Saccharomyces cerevisiae under all conditions tested and exhibits lower spore viability during meiosis. Ring synV chromosome can extends Sc2.0 design principles and provides a model with which to study genomic rearrangement, ring chromosome evolution, and human ring chromosome disorders.


Subject(s)
Chromosomes, Artificial, Yeast/chemistry , Genome, Fungal , Saccharomyces cerevisiae/genetics , Synthetic Biology/methods , Bacterial Proteins , CRISPR-Associated Protein 9 , Chromosomes, Artificial, Yeast/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Endonucleases , Gene Editing , Gene Rearrangement , Meiosis , Models, Genetic , Saccharomyces cerevisiae/cytology , Transformation, Genetic
5.
Eng Life Sci ; 17(9): 1021-1029, 2017 Sep.
Article in English | MEDLINE | ID: mdl-32624852

ABSTRACT

Heterologous production of naringenin, a valuable flavonoid with various biotechnological applications, was well studied in the model organisms such as Escherichia coli or Saccharomyces cerevisiae. In this study, a synergistic co-culture system was developed for the production of naringenin from xylose by engineering microorganism. A long metabolic pathway was reconstructed in the co-culture system by metabolic engineering. In addition, the critical gene of 4-coumaroyl-CoA ligase (4CL) was simultaneously integrated into the yeast genome as well as a multi-copy free plasmid for increasing enzyme activity. On this basis, some factors related with fermentation process were considered in this study, including fermented medium, inoculation size and the inoculation ratio of two microbes. A yield of 21.16 ± 0.41 mg/L naringenin was produced in this optimized co-culture system, which was nearly eight fold to that of the mono-culture of yeast. This is the first time for the biosynthesis of naringenin in the co-culture system of S. cerevisiae and E. coli from xylose, which lays a foundation for future study on production of flavonoid.

6.
Microb Cell Fact ; 15: 21, 2016 Jan 25.
Article in English | MEDLINE | ID: mdl-26809519

ABSTRACT

BACKGROUND: In the industry, the conventional two-step fermentation method was used to produce 2-keto-L-gulonic acid (2-KGA), the precursor of vitamin C, by three strains, namely, Gluconobacter oxydans, Bacillus spp. and Ketogulonicigenium vulgare. Despite its high production efficiency, the long incubation period and an additional second sterilization process inhibit the further development. Therefore, we aimed to reorganize a synthetic consortium of G. oxydans and K. vulgare for one-step fermentation of 2-KGA and enhance the symbiotic interaction between microorganisms to perform better. RESULTS: During the fermentation, competition for sorbose of G. oxydans arose when co-cultured with K. vulgare. In this study, the competition between the two microbes was alleviated and their mutualism was enhanced by deleting genes involved in sorbose metabolism of G. oxydans. In the engineered synthetic consortium (H6 + Kv), the yield of 2-KGA (mol/mol) against D-sorbitol reached 89.7 % within 36 h, increased by 29.6 %. Furthermore, metabolomic analysis was used to verify the enhancement of the symbiotic relationship and to provide us potential strategies for improving the synthetic consortium. Additionally, a significant redistribution of metabolism occurred by co-culturing the K. vulgare with the engineered G. oxydans, mainly reflected in the increased TCA cycle, purine, and fatty acid metabolism. CONCLUSIONS: We reorganized and optimized a synthetic consortium of G. oxydans and K. vulgare to produce 2-KGA directly from D-sorbitol. The yield of 2-KGA was comparable to that of the conventional two-step fermentation. The metabolic interaction between the strains was further investigated by metabolomics, which verified the enhancement of the mutualism between the microbes and gave us a better understanding of the synthetic consortium.


Subject(s)
Ascorbic Acid/metabolism , Fermentation/physiology , Microbial Consortia/physiology
7.
Synth Syst Biotechnol ; 1(4): 230-235, 2016 Dec.
Article in English | MEDLINE | ID: mdl-29062948

ABSTRACT

The rapid development of synthetic biology enables the design, construction and optimization of synthetic microbial consortia to achieve specific functions. In China, the "973" project-"Design and Construction of Microbial Consortia" was funded by the National Basic Research Program of China in January 2014. It was proposed to address the fundamental challenges in engineering natural microbial consortia and reconstructing microbial consortia to meet industrial demands. In this review, we will introduce this "973" project, including the significance of microbial consortia, the fundamental scientific issues, the recent research progresses, and some case studies about synthetic microbial consortia in the past two and a half years.

SELECTION OF CITATIONS
SEARCH DETAIL
...