Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
medRxiv ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38766042

ABSTRACT

Objective: Systemic inflammation, aging, and type 2 diabetes (T2DM) all contribute to the development of cardiovascular dysfunction and impaired aerobic exercise capacity but their interplay remains unclear. This study evaluates the impact of age, sex, and inflammation on coronary and peripheral vascular function and exercise capacity in elderly individuals with and without type 2 diabetes (T2DM). Research Design and Methods: Elderly individuals (age ≥65 years) underwent biochemical and tissue inflammatory phenotyping, cardiopulmonary exercise testing (CPET), cardiovascular magnetic resonance (CMR) imaging, and vascular reactivity testing. Correlation and regression analyses determined the effects of systemic inflammation, older age, and sex on cardiovascular health, stratified by T2DM status. Results: For the 133 recruited individuals (44% female; median age 71, IQR=7 years, 41% with T2DM) the presence of T2DM did not have an effect on most blood serum inflammatory markers and skin biopsies. Hyperemic myocardial blood flow (hMBF), flow-mediated, and flow-independent nitroglycerin induced brachial artery dilation were significantly impaired in males, but not females with T2DM. Peak VO2 was lower with T2DM (p=0.022), mostly because of the effect of T2DM in females. Females showed more adverse myocardial remodeling assessed by extracellular volume (p=0.008), independent of T2DM status. Conclusions: Our findings suggest that the pathophysiological manifestations of T2DM on vascular function and aerobic exercise capacity are distinct in elderly males and females and this may reflect underlying differences in vascular and myocardial aging in the presence of T2DM.

2.
Article in English | MEDLINE | ID: mdl-38258750

ABSTRACT

Objectives: To identify proteins that are prognostic for diabetic foot ulcer (DFU) healing and may serve as biomarkers for its management, serum samples were analyzed from diabetic mellitus (DM) patients. Approach: The serum specimens that were evaluated in this study were obtained from DM patients with DFU who participated in a prospective study and were seen biweekly until they healed their ulcer or the exit visit at 12 weeks. The group was divided into Healers (who healed their DFU during the study) and Non-Healers. Results: Interleukin (IL)-10, IL-4, IL-5, IL-6, and IL-13 and interferon-gamma were higher in the Healers while Fractalkine, IL-8, and TNFα were higher in the Non-Healers. The trajectory of IL-10 levels remained stable over time within and across groups, resulting in a strong prognostic ability for the prospective DFU healing course. Classification and Regression Tree analysis created an 11-node decision tree with healing status as the categorical response. Innovation: Consecutive measurements of proteins associated with wound healing can identify biomarkers that can predict DFU healing over a 12-week period. IL-10 was the strongest candidate for prediction. Conclusion: Measurement of serum proteins can serve as a successful strategy in guiding clinical management of DFU. The data also indicate likely superior performance of building a multiprotein biomarker score instead of relying on single biomarkers.

3.
Article in English | MEDLINE | ID: mdl-38183631

ABSTRACT

Introduction: Diabetes mellitus (DM) affects over 422 million people globally. Patients with DM are subject to a myriad of complications, of which diabetic foot ulcers (DFUs) are the most common with ∼25% chance of developing these wounds throughout their lifetime. Innovation: Currently there are no therapeutic RNAs approved for use in DFUs. Use of dressings containing novel layer-by-layer (LbL)-formulated therapeutic RNAs that inhibit PHD2 and miR-210 can significantly improve diabetic wound healing. These dressings provide sustained release of therapeutic RNAs to the wounds locally without systemic side effects. Clinical Problem Addressed: Diabetic foot wounds are difficult to heal and often result in significant patient morbidity and mortality. Materials and Methods: We used the diabetic neuroischemic rabbit model of impaired wound healing. Diabetes was induced in the rabbits with alloxan, and neuroischemia was induced by ligating the central neurovascular bundle of each ear. Four 6-mm full-thickness wounds were created on each ear. A LbL technique was used to conformally coat the wound dressings with chemically modified RNAs, including an antisense oligonucleotide (antimiR) targeting microRNA-210 (miR-210), an short synthetic hairpin RNA (sshRNA) targeting PHD2, or both. Results: Wound healing was improved by the antimiR-210 but not the PHD2-sshRNA. Specific knockdown of miR-210 in tissue as measured by RT-qPCR was ∼8 Ct greater than nonspecific controls, and this apparent level of knockdown (>99%) suggests that delivery to the tissue is highly efficient at the administered dose. Discussion: Healing of ischemic/neuropathic wounds in diabetic rabbits was accelerated upon inhibition of miR-210 by LbL delivery to the wound bed. miR-210 inhibition was achieved using a chemically modified antisense RNA.

4.
STAR Protoc ; 4(1): 102029, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36857077

ABSTRACT

Here, we present a protocol for the integration of human skin onto the backs of diabetic immunodeficient mice, providing a versatile in vivo model for mimicking and studying mechanisms involved in impaired cutaneous wound healing. This protocol includes instructions for the grafting of human skin, induction of diabetes using streptozotocin and wounding/post-wounding care of immunodeficient mice, as well as suggested downstream tissue analyses. This preclinical mouse model can be used to validate the efficacy of newly developed wound dressings. For complete details on the use and execution of this protocol, please refer to Theocharidis et al. (2022).1.


Subject(s)
Diabetes Mellitus, Experimental , Humans , Mice , Animals , Wound Healing , Transplantation, Heterologous , Skin , Streptozocin/toxicity
5.
Expert Opin Investig Drugs ; 32(2): 95-99, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36749693

ABSTRACT

INTRODUCTION: Diabetes affects 400 million people globally and patients and causes nephropathy, neuropathy, and vascular disease. Amongst these complications, diabetic foot ulcers remain a substantial problem for patients and clinicians. Aggressive wound care and antibiotics remain important for the healing of these chronic wounds, but even when treated these chronic ulcers can lead to infection and amputations. AREAS COVERED: This paper reviews the pathophysiology of diabetic foot ulcers and the current management strategies. Then, it discusses novel therapeutics such as topical oxygen therapy as well as autologous patches and macrophage creams. EXPERT OPINION: Diabetic foot ulcers are a substantial problem for patients and clinicians. Early identification, aggressive wound care, and normoglycemia remain the standard of care, however when these fail it is important to adapt. Since each patient and wound vary drastically we believe they should be treated as such. For patient with intact perfusion, topical ON101 and sucrose octasulfate creams can help. While patient with peripheral arterial disease should consider topical oxygen therapy as an adjunct. However, as scientists gain a better understanding of the pathophysiology behind DFUs, the hope is that this new wave of therapeutics will emerge.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Humans , Diabetic Foot/therapy , Anti-Bacterial Agents/therapeutic use , Therapies, Investigational , Oxygen
6.
Adv Ther ; 40(1): 67-75, 2023 01.
Article in English | MEDLINE | ID: mdl-36264535

ABSTRACT

Diabetic foot ulcers are a health crisis that affect millions of individuals worldwide. Current standard of care involves diligent wound care with adjunctive antibiotics and surgical debridement. However, despite this, the majority will still become infected and fail to heal. Recent efforts using bioengineered skin initially appeared promising, but randomized clinical trials have disappointed. Scientists have now begun to understand that the normal wound healing physiology does not apply to diabetic foot ulcers as they maintain a chronic state of inflammation and fail to progress in a linear pathway. Using transcriptomics, research over the past decade has started identifying master genes and protein pathways that are dysregulated in patients with diabetes. This review paper discusses those genes involved and how novel advancements are using this information to create new biologically based compounds to accelerate wound healing in patients with diabetic foot ulcers.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Humans , Diabetic Foot/genetics , Diabetic Foot/therapy , Transcriptome , Wound Healing/physiology , Debridement , Anti-Bacterial Agents/therapeutic use
7.
Nat Biomed Eng ; 6(10): 1118-1133, 2022 10.
Article in English | MEDLINE | ID: mdl-35788686

ABSTRACT

Diabetic foot ulcers and other chronic wounds with impaired healing can be treated with bioengineered skin or with growth factors. However, most patients do not benefit from these treatments. Here we report the development and preclinical therapeutic performance of a strain-programmed patch that rapidly and robustly adheres to diabetic wounds, and promotes wound closure and re-epithelialization. The patch consists of a dried adhesive layer of crosslinked polymer networks bound to a pre-stretched hydrophilic elastomer backing, and implements a hydration-based shape-memory mechanism to mechanically contract diabetic wounds in a programmable manner on the basis of analytical and finite-element modelling. In mouse and human skin, and in mini-pigs and humanized mice, the patch enhanced the healing of diabetic wounds by promoting faster re-epithelialization and angiogenesis, and the enrichment of fibroblast populations with a pro-regenerative phenotype. Strain-programmed patches might also be effective for the treatment of other forms of acute and chronic wounds.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Humans , Animals , Mice , Swine , Swine, Miniature , Wound Healing , Diabetic Foot/drug therapy , Diabetic Foot/metabolism , Elastomers , Polymers/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...