Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
mBio ; 15(3): e0296823, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38294237

ABSTRACT

Of the approximately 10 million cases of Mycobacterium tuberculosis (Mtb) infections each year, over 10% are resistant to the frontline antibiotic isoniazid (INH). INH resistance is predominantly caused by mutations that decrease the activity of the bacterial enzyme KatG, which mediates the conversion of the pro-drug INH to its active form INH-NAD. We previously discovered an inhibitor of Mtb respiration, C10, that enhances the bactericidal activity of INH, prevents the emergence of INH-resistant mutants, and re-sensitizes a collection of INH-resistant mutants to INH through an unknown mechanism. To investigate the mechanism of action of C10, we exploited the toxicity of high concentrations of C10 to select for resistant mutants. We discovered two mutations that confer resistance to the disruption of energy metabolism and allow for the growth of Mtb in high C10 concentrations, indicating that growth inhibition by C10 is associated with inhibition of respiration. Using these mutants as well as direct inhibitors of the Mtb electron transport chain, we provide evidence that inhibition of energy metabolism by C10 is neither sufficient nor necessary to potentiate killing by INH. Instead, we find that C10 acts downstream of INH-NAD synthesis, causing Mtb to become particularly sensitive to inhibition of the INH-NAD target, InhA, without changing the concentration of INH-NAD or the activity of InhA, the two predominant mechanisms of potentiating INH. Our studies revealed that there exists a vulnerability in Mtb that can be exploited to render Mtb sensitive to otherwise subinhibitory concentrations of InhA inhibitor.IMPORTANCEIsoniazid (INH) is a critical frontline antibiotic to treat Mycobacterium tuberculosis (Mtb) infections. INH efficacy is limited by its suboptimal penetration of the Mtb-containing lesion and by the prevalence of clinical INH resistance. We previously discovered a compound, C10, that enhances the bactericidal activity of INH, prevents the emergence of INH-resistant mutants, and re-sensitizes a set of INH-resistant mutants to INH. Resistance is typically mediated by katG mutations that decrease the activation of INH, which is required for INH to inhibit the essential enzyme InhA. Our current work demonstrates that C10 re-sensitizes INH-resistant katG-hypomorphs without enhancing the activation of INH. We furthermore show that C10 causes Mtb to become particularly vulnerable to InhA inhibition without compromising InhA activity on its own. Therefore, C10 represents a novel strategy to curtail the development of INH resistance and to sensitize Mtb to sub-lethal doses of INH, such as those achieved at the infection site.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Isoniazid/pharmacology , Mycobacterium tuberculosis/genetics , Antitubercular Agents/pharmacology , Drug Resistance, Bacterial/genetics , Bacterial Proteins/genetics , Tuberculosis, Multidrug-Resistant/microbiology , Mutation , Catalase/genetics , Microbial Sensitivity Tests
2.
J Med Chem ; 66(16): 11056-11077, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37485869

ABSTRACT

Mycobacterium tuberculosis (Mtb) drug resistance poses an alarming threat to global tuberculosis control. We previously reported that C10, a ring-fused thiazolo-2-pyridone, inhibits Mtb respiration, blocks biofilm formation, and restores the activity of the antibiotic isoniazid (INH) in INH-resistant Mtb isolates. This discovery revealed a new strategy to address INH resistance. Expanding upon this strategy, we identified C10 analogues with improved potency and drug-like properties. By exploring three heterocycle spacers (oxadiazole, 1,2,3-triazole, and isoxazole) on the ring-fused thiazolo-2-pyridone scaffold, we identified two novel isoxazoles, 17h and 17j. 17h and 17j inhibited Mtb respiration and biofilm formation more potently with a broader therapeutic window, were better potentiators of INH-mediated inhibition of an INH-resistant Mtb mutant, and more effectively inhibited intracellular Mtb replication than C10. The (-)17j enantiomer showed further enhanced activity compared to its enantiomer and the 17j racemic mixture. Our potent second-generation C10 analogues offer promise for therapeutic development against drug-resistant Mtb.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Isoniazid/pharmacology , Isoniazid/therapeutic use , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Drug Resistance, Bacterial , Tuberculosis, Multidrug-Resistant/drug therapy , Isoxazoles/pharmacology , Microbial Sensitivity Tests , Bacterial Proteins
3.
bioRxiv ; 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36798348

ABSTRACT

Of the approximately 10 million cases of Mycobacterium tuberculosis (Mtb) infections each year, over 10% are resistant to the frontline antibiotic isoniazid (INH). INH resistance is predominantly caused by mutations that decrease the activity of the bacterial enzyme KatG, which mediates conversion of the pro-drug INH to its active form INH-NAD. We previously discovered an inhibitor of Mtb respiration, C10, that enhances the bactericidal activity of INH, prevents the emergence of INH-resistant mutants, and re-sensitizes a collection of INH-resistant mutants to INH through an unknown mechanism. To investigate the mechanism of action of C10, we exploited the toxicity of high concentrations of C10 to select for resistant mutants. We discovered two mutations that confer resistance to the disruption of energy metabolism and allow for growth of Mtb in high C10 concentrations, indicating that growth inhibition by C10 is associated with inhibition of respiration. Using these mutants as well as direct inhibitors of the Mtb electron transport chain, we provide evidence that inhibition of energy metabolism by C10 is neither sufficient nor necessary to potentiate killing by INH. Instead, we find that C10 acts downstream of INH-NAD synthesis, causing Mtb to become particularly sensitive to inhibition of the INH-NAD target, InhA, without changing the concentration of INH-NAD or the activity of InhA, the two predominant mechanisms of potentiating INH. Our studies revealed that there exists a vulnerability in Mtb that can be exploited to render Mtb sensitive to otherwise subinhibitory concentrations of InhA inhibitor.

4.
Front Cell Infect Microbiol ; 12: 958555, 2022.
Article in English | MEDLINE | ID: mdl-36072222

ABSTRACT

Treatment of Mycobacterium tuberculosis (Mtb) infections is particularly arduous. One challenge to effectively treating tuberculosis is that drug efficacy in vivo often fails to match drug efficacy in vitro. This is due to multiple reasons, including inadequate drug concentrations reaching Mtb at the site of infection and physiological changes of Mtb in response to host derived stresses that render the bacteria more tolerant to antibiotics. To more effectively and efficiently treat tuberculosis, it is necessary to better understand the physiologic state of Mtb that promotes drug tolerance in the host. Towards this end, multiple studies have converged on bacterial central carbon metabolism as a critical contributor to Mtb drug tolerance. In this review, we present the evidence that changes in central carbon metabolism can promote drug tolerance, depending on the environment surrounding Mtb. We posit that these metabolic pathways could be potential drug targets to stymie the development of drug tolerance and enhance the efficacy of current antimicrobial therapy.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Lymph Node , Carbon/metabolism , Drug Tolerance , Humans , Metabolic Networks and Pathways
5.
Cell Rep ; 33(5): 108339, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33147451

ABSTRACT

Here, we report our studies of immune-mediated regulation of Zika virus (ZIKV), herpes simplex virus 1 (HSV-1), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the human cornea. We find that ZIKV can be transmitted via corneal transplantation in mice. However, in human corneal explants, we report that ZIKV does not replicate efficiently and that SARS-CoV-2 does not replicate at all. Additionally, we demonstrate that type III interferon (IFN-λ) and its receptor (IFNλR1) are expressed in the corneal epithelium. Treatment of human corneal explants with IFN-λ, and treatment of mice with IFN-λ eye drops, upregulates antiviral interferon-stimulated genes. In human corneal explants, blockade of IFNλR1 enhances replication of ZIKV and HSV-1 but not SARS-CoV-2. In addition to an antiviral role for IFNλR1 in the cornea, our results suggest that the human cornea does not support SARS-CoV-2 infection despite expression of ACE2, a SARS-CoV-2 receptor, in the human corneal epithelium.


Subject(s)
Betacoronavirus/physiology , Cornea/virology , Coronavirus Infections/transmission , Herpesvirus 1, Human/physiology , Interferons/immunology , Pneumonia, Viral/transmission , Zika Virus/physiology , Animals , Betacoronavirus/immunology , COVID-19 , Cornea/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Herpes Simplex/immunology , Herpes Simplex/transmission , Herpes Simplex/virology , Humans , Mice , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2 , Virus Replication/physiology , Zika Virus Infection/immunology , Zika Virus Infection/transmission , Zika Virus Infection/virology , Interferon Lambda
6.
Cell Rep ; 31(11): 107771, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32553167

ABSTRACT

STING gain-of-function causes autoimmunity and immunodeficiency in mice and STING-associated vasculopathy with onset in infancy (SAVI) in humans. Here, we report that STING gain-of-function in mice prevents development of lymph nodes and Peyer's patches. We show that the absence of secondary lymphoid organs is associated with diminished numbers of innate lymphoid cells (ILCs), including lymphoid tissue inducer (LTi) cells. Although wild-type (WT) α4ß7+ progenitors differentiate efficiently into LTi cells, STING gain-of-function progenitors do not. Furthermore, STING gain-of-function impairs development of all types of ILCs. Patients with STING gain-of-function mutations have fewer ILCs, although they still have lymph nodes. In mice, expression of the STING mutant in RORγT-positive lineages prevents development of lymph nodes and reduces numbers of LTi cells. RORγT lineage-specific expression of STING gain-of-function also causes lung disease. Since RORγT is expressed exclusively in LTi cells during fetal development, our findings suggest that STING gain-of-function prevents lymph node organogenesis by reducing LTi cell numbers in mice.


Subject(s)
Cell Differentiation/immunology , Immunity, Innate/immunology , Lymph Nodes/immunology , Lymphocytes/cytology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Gain of Function Mutation/immunology , Lymphoid Tissue/immunology , Mice , Organogenesis/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...