Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
J Phys Chem A ; 128(37): 7816-7829, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39240216

ABSTRACT

The diradical benzyne isomers are excellent prototypes for evaluating the ability of an electronic structure method to describe static and dynamic correlation. The benzyne isomers are also interesting molecules with which to study the fundamentals of through-space and through-bond diradical coupling that is important in so many electronic device applications. In the current study, we utilize the multireference methods MC-SCF, MR-CISD, MR-CISD+Q, and MR-AQCC with an (8,8) complete active space that includes the σ, σ*, π and π* orbitals, to characterize the electronic structure of ortho-, meta- and para-benzyne. We also determine the adiabatic and vertical singlet-triplet splittings for these isomers. MR-AQCC and MR-CISD+Q produced energy gaps in good agreement with previously obtained experimental values. Geometries, orbital energies and unpaired electron densities show significant through-space coupling in the o- and m-benzynes, while p-benzyne shows through-bond coupling, explaining the dramatically different singlet-triplet gaps between the three isomers.

2.
Chem Mater ; 36(13): 6618-6626, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39005532

ABSTRACT

Bi2Te3 is a well-known thermoelectric material that was first investigated in the 1960s, optimized over decades, and is now one of the highest performing room-temperature thermoelectric materials to-date. Herein, we report on the colloidal synthesis, growth mechanism, and thermoelectric properties of Bi2Te3 nanoplates with a single nanopore in the center. Analysis of the reaction products during the colloidal synthesis reveals that the reaction progresses via a two-step nucleation and epitaxial growth: first of elemental Te nanorods and then the binary Bi2Te3 nanoplate growth. The rates of epitaxial growth can be controlled during the reaction, thus allowing the formation of a single nanopore in the center of the Bi2Te3 nanoplates. The size of the nanopore can be controlled by changing the pH of the reaction solution, where larger pores with diameter of ∼50 nm are formed at higher pH and smaller pores with diameter of ∼16 nm are formed at lower pH. We propose that the formation of the single nanopore is mediated by the Kirkendall effect and thus the reaction conditions allow for the selective control over pore size. Nanoplates have well-defined hexagonal facets as seen in the scanning and transmission electron microscopy images. The single nanopores have a thin amorphous layer at the edge, revealed by transmission electron microscopy. Thermoelectric properties of the pristine and single-nanopore Bi2Te3 nanoplates were measured in the parallel and perpendicular directions. These properties reveal strong anisotropy with a significant reduction to thermal conductivity and increased electrical resistivity in the perpendicular direction due to the higher number of nanoplate and nanopore interfaces. Furthermore, Bi2Te3 nanoplates with a single nanopore exhibit ultralow lattice thermal conductivity values, reaching ∼0.21 Wm-1K-1 in the perpendicular direction. The lattice thermal conductivity was found to be systematically lowered with pore size, allowing for the realization of a thermoelectric figure of merit, zT of 0.75 at 425 K for the largest pore size.

3.
Clin Pharmacol Ther ; 115(5): 1152-1161, 2024 May.
Article in English | MEDLINE | ID: mdl-38294091

ABSTRACT

For some patients with psoriasis, orally administered small molecule inhibitors of interleukin (IL)-17A may represent a convenient alternative to IL-17A-targeting monoclonal antibodies. This first-in-human study assessed the safety, tolerability, pharmacokinetics (PKs), and peripherally circulating IL-17A target engagement profile of single or multiple oral doses of the small molecule IL-17A inhibitor LY3509754 (NCT04586920). Healthy participants were randomly assigned to receive LY3509754 or placebo in sequential escalating single ascending dose (SAD; dose range 10-2,000 mg) or multiple ascending dose (MAD; dose range 100-1,000 mg daily for 14 days) cohorts. The study enrolled 91 participants (SAD, N = 51 and MAD, N = 40) aged 21-65 years (71% men). LY3509754 had a time to maximum concentration (Tmax) of 1.5-3.5 hours, terminal half-life of 11.4-19.1 hours, and exhibited dose-dependent increases in exposure. LY3509754 had strong target engagement, indicated by elevated plasma IL-17A levels within 12 hours of dosing. Four participants from the 400-mg (n = 1) and 1,000-mg (n = 3) MAD cohorts experienced increased liver transaminases or acute hepatitis (onset ≥ 12 days post-last LY3509754 dose), consistent with drug-induced liver injury (DILI). One case of acute hepatitis was severe, resulted in temporary hospitalization, and was classified as a serious adverse event. No adverse effects on other major organ systems were observed. Liver biopsies from three of the four participants revealed lymphocyte-rich, moderate-to-severe lobular inflammation. We theorize that the DILI relates to an off-target effect rather than IL-17A inhibition. In conclusion, despite strong target engagement and a PK profile that supported once-daily administration, this study showed that oral dosing with LY3509754 was poorly tolerated.


Subject(s)
Hepatitis , Psoriasis , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Administration, Oral , Dose-Response Relationship, Drug , Healthy Volunteers , Interleukin-17 , Psoriasis/drug therapy
4.
J Alzheimers Dis ; 97(2): 927-937, 2024.
Article in English | MEDLINE | ID: mdl-38143367

ABSTRACT

BACKGROUND: Increasing evidence has highlighted retinal impairments in neurodegenerative diseases. Dominant mutations in TAR DNA-binding protein 43 (TDP-43) cause amyotrophic lateral sclerosis (ALS), and the accumulation of TDP-43 in the cytoplasm is a pathological hallmark of ALS, frontotemporal dementia (FTD), and many other neurodegenerative diseases. OBJECTIVE: While homozygous transgenic mice expressing the disease-causing human TDP-43 M337V mutant (TDP-43M337V mice) experience premature death, hemizygous TDP-43M337V mice do not suffer sudden death, but they exhibit age-dependent motor-coordinative and cognitive deficits. This study aims to leverage the hemizygous TDP-43M337V mice as a valuable ALS/FTD disease model for the assessment also of retinal changes during the disease progression. METHODS: We evaluated the retinal function of young TDP-43M337V mice by full field electroretinogram (ERG) recordings. RESULTS: At 3-4 months of age, well before the onset of brain dysfunction at 8 months, the ERG responses were notably impaired in the retinas of young female TDP-43M337V mice in contrast to their male counterparts and age-matched non-transgenic mice. Mitochondria have been implicated as critical targets of TDP-43. Further investigation revealed that significant changes in the key regulators of mitochondrial dynamics and bioenergetics were only observed in the retinas of young female TDP-43M337V mice, while these alterations were not present in the brains of either gender. CONCLUSIONS: Together our findings suggest a sex-specific vulnerability within the retina in the early disease stage, and highlight the importance of retinal changes and mitochondrial markers as potential early diagnostic indicators for ALS, FTD, and other TDP-43 related neurodegenerative conditions.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Neurodegenerative Diseases , Mice , Humans , Male , Female , Animals , Mice, Transgenic , Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Retina/pathology
5.
Microsyst Nanoeng ; 9: 125, 2023.
Article in English | MEDLINE | ID: mdl-37814609

ABSTRACT

We introduce an imaging system that can simultaneously record complete Mueller polarization responses for a set of wavelength channels in a single image capture. The division-of-focal-plane concept combines a multiplexed illumination scheme based on Fourier optics together with an integrated telescopic light-field imaging system. Polarization-resolved imaging is achieved using broadband nanostructured plasmonic polarizers as functional pinhole apertures. The recording of polarization and wavelength information on the image sensor is highly interpretable. We also develop a calibration approach based on a customized neural network architecture that can produce calibrated measurements in real-time. As a proof-of-concept demonstration, we use our calibrated system to accurately reconstruct a thin film thickness map from a four-inch wafer. We anticipate that our concept will have utility in metrology, machine vision, computational imaging, and optical computing platforms.

6.
J Am Chem Soc ; 145(39): 21408-21418, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37747784

ABSTRACT

The Bergman cyclization of (Z)-hexa-3-ene-1,5-diyne to form the aromatic diradical p-benzyne has garnered attention as a potential antitumor agent due to its relatively low cyclization barrier and the stability of the resulting diradical. Here, we present a theoretical investigation of several ionic extensions of the fundamental Bergman cyclization: electrocyclizations of the penta-1,4-diyne anion, hepta-1,6-diyne cation, and octa-1,7-diyne dication, leveraging the spin-flip formulation of the equation-of-motion coupled cluster theory with single and double substitutions (EOM-SF-CCSD). Though the penta-1,4-diyne anion exhibits a large cyclization barrier of +66 kcal mol-1, cyclization of both the hepta-1,6-diyne cation and octa-1,7-diyne dication along a previously unreported triplet pathway requires relatively low energy. We also identified the presence of significant aromaticity in the triplet diradical products of these two cationic cyclizations.

7.
Genes (Basel) ; 14(8)2023 07 25.
Article in English | MEDLINE | ID: mdl-37628570

ABSTRACT

Expansion of a CGG repeat in the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene on the X chromosome is the cause of Fragile X Syndrome (FXS). The repeat length of unaffected individuals varies between 5-40 repeats, whereas >200 repeats are observed in cases of FXS. The intermediate range between 55-200 repeats is considered the premutation range and is observed in roughly 1:300 females and 1:900 males in the general population. With the availability of large-scale whole genome sequence (WGS) data and the development of computational tools to detect repeat expansions, we systematically examined the role of FMR1 premutation alleles in autism spectrum disorder (ASD) susceptibility, assess the prevalence, and consider the allelic stability between parents and offspring. We analyzed the WGS data of 22,053 subjects, including 32 FXS positive controls, 1359 population controls, and 5467 ASD families. We observed no FMR1 full mutation range repeats among the ASD parent-offspring families but identified 180 family members with premutation range alleles, which represents a higher prevalence compared to the independent WGS control sample and previous reports in the literature. A sex-specific analysis between probands and unaffected siblings did not reveal a significant increase in the burden of premutation alleles in either males or females with ASD. PCR validation, however, suggests an overestimation of the frequency of FMR1 premutation range alleles through computational analysis of WGS data. Overall, we show the utility of large-scale repeat expansion screening in WGS data and conclude that there is no apparent evidence of FMR1 premutation alleles contributing to ASD susceptibility.


Subject(s)
Autism Spectrum Disorder , Fragile X Syndrome , Female , Male , Humans , Alleles , Autism Spectrum Disorder/genetics , Fragile X Syndrome/genetics , Family , Sequence Analysis
8.
Int J Mol Sci ; 24(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36982771

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory loss and personality changes that ultimately lead to dementia. Currently, 50 million people worldwide suffer from dementia related to AD, and the pathogenesis underlying AD pathology and cognitive decline is unknown. While AD is primarily a neurological disease of the brain, individuals with AD often experience intestinal disorders, and gut abnormalities have been implicated as a major risk factor in the development of AD and relevant dementia. However, the mechanisms that mediate gut injury and contribute to the vicious cycle between gut abnormalities and brain injury in AD remain unknown. In the present study, a bioinformatics analysis was performed on the proteomics data of variously aged AD mouse colon tissues. We found that levels of integrin ß3 and ß-galactosidase (ß-gal), two markers of cellular senescence, increased with age in the colonic tissue of mice with AD. The advanced artificial intelligence (AI)-based prediction of AD risk also demonstrated the association between integrin ß3 and ß-gal and AD phenotypes. Moreover, we showed that elevated integrin ß3 levels were accompanied by senescence phenotypes and immune cell accumulation in AD mouse colonic tissue. Further, integrin ß3 genetic downregulation abolished upregulated senescence markers and inflammatory responses in colonic epithelial cells in conditions associated with AD. We provide a new understanding of the molecular actions underpinning inflammatory responses during AD and suggest integrin ß3 may function as novel target mediating gut abnormalities in this disease.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/genetics , Integrin beta3/metabolism , Artificial Intelligence , Cellular Senescence/genetics , Inflammation/complications
9.
Biomolecules ; 12(12)2022 12 13.
Article in English | MEDLINE | ID: mdl-36551290

ABSTRACT

Cytoskeleton proteins have been long recognized as structural proteins that provide the necessary mechanical architecture for cell development and tissue homeostasis. With the completion of the cancer genome project, scientists were surprised to learn that huge numbers of mutated genes are annotated as cytoskeletal or associated proteins. Although most of these mutations are considered as passenger mutations during cancer development and evolution, some genes show high mutation rates that can even determine clinical outcomes. In addition, (phospho)proteomics study confirms that many cytoskeleton-associated proteins, e.g., ß-catenin, PIK3CA, and MB21D2, are important signaling mediators, further suggesting their biofunctional roles in cancer development. With emerging evidence to indicate the involvement of mechanotransduction in stemness formation and cell differentiation, mutations in these key cytoskeleton components may change the physical/mechanical properties of the cells and determine the cell fate during cancer development. In particular, tumor microenvironment remodeling triggered by such alterations has been known to play important roles in autophagy, metabolism, cancer dormancy, and immune evasion. In this review paper, we will highlight the current understanding of how aberrant cytoskeleton networks affect cancer behaviors and cellular functions through mechanotransduction.


Subject(s)
Mechanotransduction, Cellular , Neoplasms , Humans , Cytoskeleton/metabolism , Microtubules/metabolism , Cytoskeletal Proteins/metabolism , Neoplasms/metabolism , Cell Differentiation , Tumor Microenvironment
11.
Nature ; 609(7929): 1021-1028, 2022 09.
Article in English | MEDLINE | ID: mdl-36131014

ABSTRACT

Medulloblastoma (MB) comprises a group of heterogeneous paediatric embryonal neoplasms of the hindbrain with strong links to early development of the hindbrain1-4. Mutations that activate Sonic hedgehog signalling lead to Sonic hedgehog MB in the upper rhombic lip (RL) granule cell lineage5-8. By contrast, mutations that activate WNT signalling lead to WNT MB in the lower RL9,10. However, little is known about the more commonly occurring group 4 (G4) MB, which is thought to arise in the unipolar brush cell lineage3,4. Here we demonstrate that somatic mutations that cause G4 MB converge on the core binding factor alpha (CBFA) complex and mutually exclusive alterations that affect CBFA2T2, CBFA2T3, PRDM6, UTX and OTX2. CBFA2T2 is expressed early in the progenitor cells of the cerebellar RL subventricular zone in Homo sapiens, and G4 MB transcriptionally resembles these progenitors but are stalled in developmental time. Knockdown of OTX2 in model systems relieves this differentiation blockade, which allows MB cells to spontaneously proceed along normal developmental differentiation trajectories. The specific nature of the split human RL, which is destined to generate most of the neurons in the human brain, and its high level of susceptible EOMES+KI67+ unipolar brush cell progenitor cells probably predisposes our species to the development of G4 MB.


Subject(s)
Cell Differentiation , Cerebellar Neoplasms , Medulloblastoma , Metencephalon , Cell Differentiation/genetics , Cell Lineage , Cerebellar Neoplasms/classification , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Cerebellum/embryology , Cerebellum/pathology , Core Binding Factor alpha Subunits/genetics , Hedgehog Proteins/metabolism , Histone Demethylases , Humans , Ki-67 Antigen/metabolism , Medulloblastoma/classification , Medulloblastoma/genetics , Medulloblastoma/pathology , Metencephalon/embryology , Metencephalon/pathology , Muscle Proteins , Mutation , Otx Transcription Factors/deficiency , Otx Transcription Factors/genetics , Repressor Proteins , T-Box Domain Proteins/metabolism , Transcription Factors
12.
Acta Neuropathol ; 144(5): 911-938, 2022 11.
Article in English | MEDLINE | ID: mdl-36104602

ABSTRACT

The mechanistic relationship between amyloid-beta precursor protein (APP) processing and mitochondrial dysfunction in Alzheimer's disease (AD) has long eluded the field. Here, we report that coiled-coil-helix-coiled-coil-helix domain containing 6 (CHCHD6), a core protein of the mammalian mitochondrial contact site and cristae organizing system, mechanistically connects these AD features through a circular feedback loop that lowers CHCHD6 and raises APP processing. In cellular and animal AD models and human AD brains, the APP intracellular domain fragment inhibits CHCHD6 transcription by binding its promoter. CHCHD6 and APP bind and stabilize one another. Reduced CHCHD6 enhances APP accumulation on mitochondria-associated ER membranes and accelerates APP processing, and induces mitochondrial dysfunction and neuronal cholesterol accumulation, promoting amyloid pathology. Compensation for CHCHD6 loss in an AD mouse model reduces AD-associated neuropathology and cognitive impairment. Thus, CHCHD6 connects APP processing and mitochondrial dysfunction in AD. This provides a potential new therapeutic target for patients.


Subject(s)
Alzheimer Disease , Amyloidosis , Alzheimer Disease/pathology , Amyloid/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloidosis/metabolism , Animals , Disease Models, Animal , Humans , Mammals/metabolism , Mice , Mice, Transgenic , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins
13.
Proc Natl Acad Sci U S A ; 119(12): e2122085119, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35294279

ABSTRACT

Control over symmetry breaking in three-dimensional electromagnetic systems offers a pathway to tailoring their optical activity. We introduce fractured Pancharatnam­Berry-phase metasurface systems, in which a full-waveplate geometric phase metasurface is fractured into two half-waveplate-based metasurfaces and actively configured using shear displacement. Local relative rotations between stacked half-nanowaveplates within the metasurface system are transduced by shear displacement, leading to dynamic modulation of their collective geometric phase properties. We apply this concept to pairs of periodic Pancharatnam­Berry-phase metasurfaces and experimentally show that these systems support arbitrary and reconfigurable broadband circular birefringence response. High-speed circular birefringence modulation is demonstrated with modest shearing speeds, indicating the potential for these concepts to dynamically control polarization states with fast temporal responses. We anticipate that fractured geometric phase metasurface systems will serve as a nanophotonic platform that leverages systems-level symmetry breaking to enable active electromagnetic wave control.

14.
J Cataract Refract Surg ; 47(9): 1167-1174, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34468454

ABSTRACT

PURPOSE: To determine whether mask-induced redirected exhaled air through the superior mask gap contacts multiuse eyedrop bottles during drop administration and the efficacy of interventions to reduce such exposure. SETTING: Academic ophthalmology center. DESIGN: Interventional analysis. METHODS: Schlieren airflow imaging was taken of an examinee wearing frequently used face masks and enacting common clinical scenarios-with and without manual occlusion of the superior mask gap and/or neck extension-and maximum visible vertical breath plume height was quantified. Bottle height during eyedrop administration was measured for 4 ophthalmologists during instillation to 8 eyes of 4 subjects. RESULTS: Breath plume height (mean ± SD 275.5 ± 16.3 mm) was significantly greater than mean bottle height (13.9 ± 4.7 mm; P < .01). Plume height was reduced with manual mask occlusion vs without (P < .01) and was also lower than mean bottle height with manual mask occlusion (P < .01) but not in the absence of occlusion (P < .01). Neck extension alone did not adequately redirect liberated breath to prevent contact with a bottle. CONCLUSIONS: Exhaled air liberated from commonly worn patient face masks was able to contact multiuse eyedrop bottles during eyedrop administration. These findings have important patient safety implications during the coronavirus disease 2019 pandemic and with other respiratory pathogens because these multiuse bottles could potentially serve as vectors of disease. Occlusion of the superior mask gap significantly reduces breath contamination and should be strongly considered by eyecare providers during drop administration in eye clinics.


Subject(s)
COVID-19 , Pandemics , Humans , Masks , Ophthalmic Solutions , SARS-CoV-2
15.
Nat Commun ; 12(1): 1749, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33741928

ABSTRACT

Sonic hedgehog medulloblastoma encompasses a clinically and molecularly diverse group of cancers of the developing central nervous system. Here, we use unbiased sequencing of the transcriptome across a large cohort of 250 tumors to reveal differences among molecular subtypes of the disease, and demonstrate the previously unappreciated importance of non-coding RNA transcripts. We identify alterations within the cAMP dependent pathway (GNAS, PRKAR1A) which converge on GLI2 activity and show that 18% of tumors have a genetic event that directly targets the abundance and/or stability of MYCN. Furthermore, we discover an extensive network of fusions in focally amplified regions encompassing GLI2, and several loss-of-function fusions in tumor suppressor genes PTCH1, SUFU and NCOR1. Molecular convergence on a subset of genes by nucleotide variants, copy number aberrations, and gene fusions highlight the key roles of specific pathways in the pathogenesis of Sonic hedgehog medulloblastoma and open up opportunities for therapeutic intervention.


Subject(s)
Cerebellar Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Hedgehog Proteins/genetics , Medulloblastoma/genetics , Transcriptome , Adolescent , Adult , Child , Child, Preschool , Female , Gene Regulatory Networks , Genetic Variation , Humans , Infant , Male , Middle Aged , Signal Transduction/genetics , Young Adult
16.
J Pharmacol Toxicol Methods ; 105: 106900, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32768644

ABSTRACT

INTRODUCTION: It has been two decades since screening new molecules and potential clinical drug candidates against the hERG potassium channel became a routine part of safety pharmacology. The earliest heuristic for what was an adequate safety margin to separate molecules with a potential liability to cause the arrhythmia torsade de pointes (TdP) from those with no such liability emerged in 2002 and was determined to be a hERG IC50 value 30-fold above the therapeutic free plasma concentration (Webster, Leishman, & Walker, 2002). In the intervening years nonclinical and clinical ICH guidance has been introduced and intense scrutiny has been applied to the QT interval of the electrocardiogram in animals and man. Has the 30-fold heuristic stood the test of time? METHODS: The hERG margins between the IC50 value and the therapeutic unbound plasma concentrations were examined for 367 compounds. These margins were compared against the categories used by www.CredibleMeds.com to classify a drug's TdP risk. A subset of 336 of these drugs were compared against their US product labels with respect to black box warnings on QTc prolongation or TdP, warnings and precautions on QTc or TdP, and QTc language in the clinical pharmacology section. RESULTS: Against the CredibleMeds classification the means of the margins for Known, Conditional, or Possible Risk of TdP, and Not Listed (presumably no TdP liability) were 4.8, 28, 71 and 339, respectively. Against the US label language the means of margins for black boxes and warnings were 3.1 and 26, respectively. The average margins associated with, positive QTc outcome, negative QTc outcome and no QTc language were 16, 479 and 204, respectively. Based on ROC curves the optimal hERG margin thresholds to separate "Known risk of TdP" from "Not Listed" and, QTc prolongation positive from QTc negative were 37- and 50-fold, respectively. CONCLUSIONS: The observed optimal margin of 50-fold in the current study is not appreciably different from a previously reported 45-fold optimal margin (Gintant, 2011). The margin falls between the margins for negative (QTc outcome or no QTc language) and positive (positive QTc outcome, warnings or black boxes) compounds. The observed optimal margin of 37-fold in the current study is not appreciably different from the commonly used 30-fold optimal margin (Webster et al., 2002). This margin falls between those for drugs with a known or conditional TdP risk and those where it is at best a possible risk, and from the 240 drugs not listed on www.CredibleMeds.com. It is expected that there would be a small numerical difference (e.g. 37 vs. 50, or as previously published 30 vs. 45) between optimal cut-offs for the TdP liability and QTc prolongation predictions since some QTc positive drugs are described on CredibleMeds.com as having only a "Possible Risk of TdP" as they are not associated with TdP when used as directed. The fact that the margins in each category form distributions is also expected given biologic variability. However, we argue that a more consistent manner of assessing hERG potency and evaluating relevant exposures would be likely to reduce the spread in these distributions and make margins even more useful as a decision-making data point.


Subject(s)
Cardiotoxicity/etiology , Cardiotoxicity/metabolism , ERG1 Potassium Channel/antagonists & inhibitors , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/metabolism , Electrocardiography/methods , Humans , Long QT Syndrome/chemically induced , Long QT Syndrome/metabolism , Torsades de Pointes/chemically induced , Torsades de Pointes/metabolism
17.
Opt Express ; 28(9): 13670-13681, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32403837

ABSTRACT

Optimization methods are playing an increasingly important role in all facets of photonics engineering, from integrated photonics to free space diffractive optics. However, efforts in the photonics community to develop optimization algorithms remain uncoordinated, which has hindered proper benchmarking of design approaches and access to device designs based on optimization. We introduce MetaNet, an online database of photonic devices and design codes intended to promote coordination and collaboration within the photonics community. Using metagratings as a model system, we have uploaded over one hundred thousand device layouts to the database, as well as source code for implementations of local and global topology optimization methods. Further analyses of these large datasets allow the distribution of optimized devices to be visualized for a given optimization method. We expect that the coordinated research efforts enabled by MetaNet will expedite algorithm development for photonics design.

18.
Cell ; 181(6): 1329-1345.e24, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32445698

ABSTRACT

Posterior fossa A (PFA) ependymomas are lethal malignancies of the hindbrain in infants and toddlers. Lacking highly recurrent somatic mutations, PFA ependymomas are proposed to be epigenetically driven tumors for which model systems are lacking. Here we demonstrate that PFA ependymomas are maintained under hypoxia, associated with restricted availability of specific metabolites to diminish histone methylation, and increase histone demethylation and acetylation at histone 3 lysine 27 (H3K27). PFA ependymomas initiate from a cell lineage in the first trimester of human development that resides in restricted oxygen. Unlike other ependymomas, transient exposure of PFA cells to ambient oxygen induces irreversible cellular toxicity. PFA tumors exhibit a low basal level of H3K27me3, and, paradoxically, inhibition of H3K27 methylation specifically disrupts PFA tumor growth. Targeting metabolism and/or the epigenome presents a unique opportunity for rational therapy for infants with PFA ependymoma.


Subject(s)
Ependymoma/genetics , Ependymoma/metabolism , Epigenome/genetics , Infratentorial Neoplasms/genetics , Infratentorial Neoplasms/metabolism , Animals , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line , Cell Proliferation/genetics , DNA Methylation/genetics , Epigenomics/methods , Histones/genetics , Histones/metabolism , Humans , Infant , Lysine/genetics , Lysine/metabolism , Male , Mice, Inbred C57BL , Mutation/genetics
19.
Light Sci Appl ; 8: 48, 2019.
Article in English | MEDLINE | ID: mdl-31149333

ABSTRACT

Metasurfaces are ultrathin optical elements that are highly promising for constructing lightweight and compact optical systems. For their practical implementation, it is imperative to maximize the metasurface efficiency. Topology optimization provides a pathway for pushing the limits of metasurface efficiency; however, topology optimization methods have been limited to the design of microscale devices due to the extensive computational resources that are required. We introduce a new strategy for optimizing large-area metasurfaces in a computationally efficient manner. By stitching together individually optimized sections of the metasurface, we can reduce the computational complexity of the optimization from high-polynomial to linear. As a proof of concept, we design and experimentally demonstrate large-area, high-numerical-aperture silicon metasurface lenses with focusing efficiencies exceeding 90%. These concepts can be generalized to the design of multifunctional, broadband diffractive optical devices and will enable the implementation of large-area, high-performance metasurfaces in practical optical systems.

SELECTION OF CITATIONS
SEARCH DETAIL