Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Environ Monit Assess ; 191(2): 99, 2019 Jan 24.
Article in English | MEDLINE | ID: mdl-30680466

ABSTRACT

Acid rain alters nutrient cycling in tea plantations. However, the acquisition of Mg and Ca by plants and their nutrient interactions with Al, N, and P in response to acid rain are poorly understood. Experimental treatments simulating acid rain at various acidities (pH 4.5, 3.5, and 2.5) were performed within a red soil tea plantation in China. The available Mg, Al, Ca, N, and P were analyzed in the rhizosphere and bulk soils. Further, these elements were measured in absorptive, transportive, and storative roots in addition to twigs, tea, and mature leaves. Available soil Mg and Ca exhibited negative and positive rhizosphere effects, respectively, but the levels of both decreased due to acid rain treatment. In addition, average Mg and Ca concentrations generally decreased in plant tissues with increasing acidity. In contrast, average Al concentration increased across all plant tissues with increasing acidity treatment. Meanwhile, the ratios of Al/Mg and Al/Ca increased with increasing acidity but that of N/Al decreased in twigs and roots. Lastly, the ratios of N/Al, P/Ca, and N/P were all altered by acid treatment in tea and/or mature leaves. Taken together, these results indicated that elevated acidity increased the internal cycling of Al in plants but decreased Mg and Ca fluxes between soils and roots. Further, the response of interactions among the five measured elements to different acidities varied with tea plant tissue. Our findings may advance our understanding of plant adaptation to increasing soil acidification and atmospheric acid deposition around the world.


Subject(s)
Acid Rain , Camellia sinensis/metabolism , Nutrients/metabolism , Soil/chemistry , Aluminum/metabolism , Calcium/metabolism , Camellia sinensis/physiology , China , Environmental Monitoring , Magnesium/metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Plant Roots/metabolism , Rhizosphere
2.
Ying Yong Sheng Tai Xue Bao ; 28(2): 449-455, 2017 Feb.
Article in Chinese | MEDLINE | ID: mdl-29749152

ABSTRACT

A series of nitrogen (N) and phosphorus (P) addition experiments using treatments of N0(0 kg N·hm-2·a-1), N1(50 kg N·hm-2·a-1), N2(100 kg N·hm-2·a-1), P (50 kg P·hm-2·a-1), N1P and N2P were conducted at Cunninghamia lanceolata plantations in subtropical China. The responses of soil organic carbon (SOC), particulate organic carbon (POC) and water-soluble organic carbon (WSOC) to the nutrient addition treatments after 3 years were determined. The results showed that N and P additions had no significant effects on SOC concentration in 0-20 cm soil layer, while P addition significantly decreased soil POC content in 0-5 cm soil layer by 26.1%. The responses of WSOC to N and P addition were mainly found in 0-5 cm soil layer, and low level N and P addition significantly increased the WSOC content in 0-5 cm soil layer. Nitrogen addition had no significant effect on POC/SOC, while the POC/SOC significantly decreased by 15.9% in response to P addition in 0-5 cm soil layer. In 5-10 cm and 10-20 cm soil layers, POC/SOC was not significantly altered in N and P addition treatments. Therefore, the forest soil C stability was mainly controlled by P content in subtropical areas. P addition was liable to cause the decomposition of surface soil active organic C and increased the soil C stability in the short term treatment.


Subject(s)
Cunninghamia , Nitrogen , Phosphorus , Carbon , China , Soil
3.
Sci Rep ; 6: 23717, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-27020048

ABSTRACT

It is unclear whether exogenous nutrients and carbon (C) additions alter substrate immobilization to deposited nitrogen (N) during decomposition. In this study, we used laboratory microcosm experiments and (15)N isotope tracer techniques with five different treatments including N addition, N+non-N nutrients addition, N+C addition, N+non-N nutrients+C addition and control, to investigate the coupling effects of non-N nutrients, C addition and N deposition on forest floor decomposition in subtropical China. The results indicated that N deposition inhibited soil organic matter and litter decomposition by 66% and 38%, respectively. Soil immobilized (15)N following N addition was lowest among treatments. Litter (15)N immobilized following N addition was significantly higher and lower than that of combined treatments during the early and late decomposition stage, respectively. Both soil and litter extractable mineral N were lower in combined treatments than in N addition treatment. Since soil N immobilization and litter N release were respectively enhanced and inhibited with elevated non-N nutrient and C resources, it can be speculated that the N leaching due to N deposition decreases with increasing nutrient and C resources. This study should advance our understanding of how forests responds the elevated N deposition.


Subject(s)
Carbon/chemistry , Nitrogen/chemistry , Organic Chemicals/chemistry , Soil/chemistry , Adsorption , Carbon/metabolism , Carbon Dioxide/chemistry , Carbon Dioxide/metabolism , China , Conservation of Natural Resources/methods , Conservation of Natural Resources/statistics & numerical data , Cunninghamia/growth & development , Cunninghamia/metabolism , Forests , Humidity , Kinetics , Nitrogen/metabolism , Nitrogen Isotopes/metabolism , Organic Chemicals/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Seasons , Temperature , Time Factors , Trees/growth & development , Trees/metabolism
4.
Ying Yong Sheng Tai Xue Bao ; 26(11): 3398-404, 2015 Nov.
Article in Chinese | MEDLINE | ID: mdl-26915196

ABSTRACT

Topsoil of green space including typical forest, shrub and grassland were collected to measure their water soluble organic carbon ( WSOC) before and after incubation of 30 days at 5, 15, 25, 35 and, 45 °C. The results showed the average values of WSOC were higher in urban than in rural green spaces, but the percentage of WSOC to total organic carbon (TOC) showed an opposite trend. No significant changes were found among the three green space types in WSOC and WSOC/TOC. Response of WSOC in green space to incubation temperature was generally highest in urban sites, followed by suburban sites, and lowest in rural sites at the incubation temperature of 5 °C, but showed an opposite trend at the temperature of 45 °C. Response coefficient of WSOC to temperature change was lower in forest and shrub than in grassland, but increased along the urban-rural gradient. Further analysis showed that WSOC positively correlated with TOC, total nitrogen and available phosphorus, and the response coefficient of WSOC to temperature change negatively correlated with available phosphorus. In summary, exogenous substances input might lead to the accumulation of WSOC in urban green space, however, urban environment was helpful to maintain the stability of WSOC, which might be due to the enrichment of available phosphorus in urban sites.


Subject(s)
Carbon/analysis , Forests , Grassland , Soil/chemistry , Temperature , Water , China , Nitrogen/analysis , Phosphorus/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...