Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(8): 086101, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38457702

ABSTRACT

The exploration of solid-solid phase transition suffers from the uncertainty of how atoms in two crystal structures match. We devised a theoretical framework to describe and classify crystal-structure matches (CSM). Such description fully exploits the translational and rotational symmetries and is independent of the choice of supercells. This is enabled by the use of the Hermite normal form, an analog of reduced echelon form for integer matrices. With its help, exhausting all CSMs is made possible, which goes beyond the conventional optimization schemes. In an example study of the martensitic transformation of steel, our enumeration algorithm finds many candidate CSMs with lower strains than known mechanisms. Two long-sought CSMs accounting for the most commonly observed Kurdjumov-Sachs orientation relationship and the Nishiyama-Wassermann orientation relationship are unveiled. Given the comprehensiveness and efficiency, our enumeration scheme provide a promising strategy for solid-solid phase transition mechanism research.

2.
Small ; 19(21): e2300747, 2023 May.
Article in English | MEDLINE | ID: mdl-36823399

ABSTRACT

Micro-supercapacitors (MSCs) are an important energy storage component for future miniaturized electronic systems, yet their key performance indexes such as high-frequency response, energy density, and cycle life still have a large room to be improved. Herein, a laser-processed carbon-titanium carbide heterostructure (LCTH) electrode is demonstrated, which can excellently address the above key challenges by employing a unique one-step laser-processing fabrication method. Different from the other reported electrode structures, this LCTH electrode shows a heterogeneous structure, featuring the carbon nanofoam layer which provides extremely short ion transport channels and abundant electrochemical active sites, and the underlying titanium carbide layer which can provide excellent electron conductivity and contribute to the pseudo-capacitance. The assembled symmetric supercapacitor can stably work at the voltage window of 3.5 V at an ultra-high frequency of approximately 1121.3 Hz, exhibiting an ultra-high areal specific energy density of 721 µFV2 cm-2 at 120 Hz and a cycle life of 140 000 cycles with capacitance retention of 100.95%, which is superior to most reported MSCs. The as-fabricated MSC is compatible with the contemporary embedded electronic component fabrication processes, which shows significant advantages in large-scale fabrication and system integration, demonstrating a broad prospect for future system-in-package applications.

3.
Adv Mater ; 35(15): e2210038, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36688671

ABSTRACT

Filter capacitors (FCs) are substantial for digital circuits and microelectronic devices, and thus more compact FCs are eternally demanded for system miniaturization. Even though microsupercapacitors are broadly regarded as an excellent candidate for future FCs, yet due to the limitation of available electrode materials, the capacitive performance of reported MSCs drops sharply under high-frequency alternating current. Herein, we present a unique laser-induced transient self-organization strategy, which synergizes pulsed laser energy and multi-physical field controlled coalescence processes, leading to the rapid and controllable preparation of titanium nitride ultrafine nano-filaments (diameter ≈3-5 nm) networks. Their chaotic fractal nanoporous structure, superior specific surface area, and excellent conductivity render these nanostructures promising candidates for FCs. Surface-mounted filter capacitors based on this electrode material exhibit ultra-long cycle-life (2 000 000 cycles) with record ultrahigh volumetric energy density of 9.17 mWh cm-3 at 120 Hz in aqueous electrolyte, displaying advantages in function, size, and integrability compared with the state-of-the-art aluminum electrolytic capacitors. The method here provides a versatile toolbox for designing novel nanostructures with intriguing characteristics and insights for developing advanced and miniaturized filter and power devices.

4.
Angew Chem Int Ed Engl ; 62(2): e202212439, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36397656

ABSTRACT

Rechargeable aqueous sodium ion batteries (ASIBs) are rising as an important alternative to lithium ion batteries, owing to their safety and low cost. Metal anodes show a high theoretical capacity and nonselective hydrated ion insertion for ASIBs, yet their large volume expansion and sluggish reaction kinetics resulted in poor electrochemical stability. Herein, we demonstrate an electrode cyclability enhancement mechanism by inlaying bismuth (Bi) nanoparticles on graphene nanosheets through chemical bond, which is achieved by a unique laser induced compounding method. This anchored metal-graphene heterostructure can effectively mitigate volume variation, and accelerate the kinetic capability as the active Bi can be exposed to the electrolyte. Our method can achieve a reversible capacity of 122 mAh g-1 at a large current density of 4 A g-1 for over 9500 cycles. This finding offers a desirable structural design of other metal anodes for aqueous energy storage systems.

5.
Nat Commun ; 13(1): 1391, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35296663

ABSTRACT

Polymer-based piezoelectric devices are promising for developing future wearable force sensors, nanogenerators, and implantable electronics, etc. The electric signals generated by them are often assumed as solely coming from the piezoelectric effect. However, triboelectric signals originated from contact electrification between the piezoelectric devices and the contacted objects can produce non-negligible interfacial electron transfer, which is often combined with the piezoelectric signal to give a triboelectric-piezoelectric hybrid output, leading to an exaggerated measured "piezoelectric" signal. Herein, a simple and effective method is proposed for quantitatively identifying and extracting the piezoelectric charge from the hybrid signal. The triboelectric and piezoelectric parts in the hybrid signal generated by a poly(vinylidene fluoride)-based device are clearly differentiated, and their force and charge characteristics in the time domain are identified. This work presents an effective method to elucidate the true piezoelectric performance in practical measurement, which is crucial for evaluating piezoelectric materials fairly and correctly.

SELECTION OF CITATIONS
SEARCH DETAIL
...